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Abstract

This paper explores how to reduce emissions from electricity generation while prevent-
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if the entry of renewables causes more reliable power plants to retire. I build a structural
dynamic oligopoly model of investment in generators of different energy sources. Using
data from Western Australia I show that a combination of carbon taxes and capacity
subsidies substantially reduces emissions while keeping reliable generators from retiring,
thereby maintaining a low risk of blackouts. I also explore the impact of renewable sub-
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1 Introduction

The electricity industry emits more greenhouse gases than any other industry and accounts
for approximately a quarter of total global emissions (IPCC, 2014). Given the industry’s out-
sized impact, environmental regulation of electricity markets is a key component of climate
policy. Renewable energy sources, such as solar and wind, provide a way to produce electric-
ity without emitting greenhouse gases; however, they are intermittent. This intermittency
matters because a critical concern when designing regulations in these markets is the risk
of extremely costly blackouts, which occur when demand for electricity exceeds the available
supply. The inclusion of renewables can exacerbate blackouts if they replace dirty but more
reliable sources since their supply is more variable.

This paper studies how we should regulate restructured electricity markets given the intermit-
tency of clean energy sources.1 Regulation is necessary to fix two major market failures. First,
firms fail to internalize the environmental cost of their emissions and therefore rely excessively
on dirty energy sources such as coal. Second, consumers do not respond to short-term fluc-
tuations in the wholesale spot price of electricity because, rather than the spot price, they
pay a price for electricity that is fixed in the short run. Therefore, if their demand in a given
moment exceeds the maximum amount of electricity that can be produced in that moment,
some consumers must be rationed randomly via blackouts rather than by willingness to pay.
This rationing can lead to underinvestment in capacity if firms do not fully capture the value
to consumers of avoiding blackouts (due to, e.g., price caps in the wholesale electricity mar-
ket). Electricity market regulators have introduced various policies to address these market
failures individually, but these issues are interdependent. Since it is the clean energy sources
that are less reliable, policies that aim to reduce emissions can increase blackouts, and those
that aim to reduce blackouts can increase emissions.

Determining the impact that policies would have on blackouts and emissions requires a frame-
work that endogenizes not only production but also investment. Investment determines the
capacity in the market, which influences whether or not blackouts occur, as well as the feasi-
ble generation mix, which influences emissions. In this paper, I develop a structural dynamic
oligopoly model of investment and production in restructured electricity markets. Modeling
investment in this industry is challenging for several reasons. First, investment is dynamic,
and the environment is nonstationary due primarily to rapidly declining renewable investment
costs. Second, there are many technologies in which firms can invest and that are relevant to
the question explored in this paper (e.g., coal, gas, wind, etc.), resulting in a high-dimensional

1Restructured electricity markets are those in which independent generators sell electricity. This market
structure stands in contrast to vertically integrated markets. Many electricity markets were restructured in
the 1990s, and these are the markets that I focus on in this paper. See Borenstein & Bushnell (2015) for a
history and evaluation of restructuring.
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state space. Finally, electricity markets can be highly concentrated,2 leading to concerns about
market power in these investment decisions. Market power can lead to underinvestment in
capacity (Kreps & Sheinkman, 1983; von der Fehr & Harbord, 1997), and it can also bias
investment in favor of higher marginal cost technologies in order to raise wholesale prices
(Bushnell & Ishii, 2007; Myatt, 2017).

The framework that I develop in this paper captures both the non-stationary dynamic incen-
tives firms face in investing in many possible technologies and also their strategic incentives,
while remaining computationally feasible. This computational feasibility allows me to explore
a rich set of policies and determine taxes and subsidies that achieve the dual policy goals
of emissions reductions and blackout avoidance. These simultaneous reductions are achieved
by incentivizing firms to not retire (and potentially invest in) relatively emissions-intensive
but reliable technologies while at the same time incentivizing the least emissions intensive
technologies that are available to be used to meet demand.

In the first part of this paper I develop the dynamic oligopoly model that links short-run
production and long-run investment. Firms supply electricity in repeated wholesale spot
markets. In each spot market, the firms use their portfolio of generators, consisting of coal
plants, natural gas plants (both peaker and combined cycle), wind farms, and solar farms,
to satisfy the demand for electricity. Demand is stochastic and inelastic in the short-run,
though it responds to retail electricity prices, which depend on average wholesale prices in
the long-run. Firms submit bids for providing electricity from each of their generators, which
have different production costs and stochastic capacities, reflecting power plant outages and
fluctuations in wind and sunlight. The demand and bids determine the wholesale market
price and result in a stream of profits, which is a function of the portfolio of generators in the
market.

Over time, the firms periodically decide whether to adjust their generator portfolios by build-
ing new generators or retiring existing ones to reduce the cost of maintaining generators. They
trade off the cost of this decision with the discounted flow of wholesale spot market profits,
which depends on other firms’ generator portfolios. Declining renewable investment costs pro-
vide an incentive for firms to wait to invest in new generators—even if it would be profitable
to do so today—since they could increase their net profits by waiting for the cost to decline
further. In order to address the challenges accompanied by a high-dimensional non-stationary
dynamic game, I make timing assumptions similar to those of Igami & Uetake (2020) that
make the game solvable using backward induction. Specifically, firms are assumed to make
their generator portfolio decisions sequentially, the order of which is random and changes each

2In U.S. markets, for example, in MISO, PJM, and the Connecticut and Boston zones of the New England
ISO, the top three suppliers own at least 30% of total capacity (Caplan, 2020). In Great Britain, the top three
own over 40% of total capacity (Mettrick, 2021).
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year. Additionally, I impose that at some point in the future, firms will no longer be able to
adjust their generator portfolios. I refer to this setup as a non-stationary, randomly-ordered
sequential moves dynamic game with lock-in.

In the second part of this paper I estimate the model’s parameters using data from Western
Australia and simulate counterfactual policies. Western Australia is an ideal case study for
studying environmental and reliability policies. It relies on an energy mix of coal, gas, and
renewables. While every electricity system has a different feasible set of sources (e.g., some
have hydropower resources), these energy sources are available nearly everywhere. Addition-
ally, Western Australia is a tractable setting for modeling how production and investment
decisions respond to different policies. It is a relatively small market (compared to, e.g., PJM
or CAISO), so it is feasible to capture the generators in the state without the state becoming
intractably large. Moreover, the system’s isolation precludes trading electricity with other
markets. Modeling investment would be difficult with trade since investment decisions would
depend on both the state in the market as well as in connected markets.

I study two policy tools in my main set of counterfactuals. The first is a commonly-used tool
(including in Western Australia) called capacity payments, which are essentially subsidies to
capacity and are not linked to energy output. These aim to reduce blackouts by providing
an incentive for firms to maintain extra capacity. The second type is a carbon tax levied on
firms in proportion to the amount of carbon emitted. I also explore the interaction of these
policy tools with wholesale price caps, which can reduce investment incentives.

In the absence of a carbon tax, capacity payments decrease blackouts but increase emissions.
They make it profitable for coal plants to remain in the market, reducing the number that re-
tire, and also increase the number of natural gas plants. In equilibrium this causes investment
in renewables to decline. Carbon taxes, meanwhile, exhibit the opposite pattern: they de-
crease emissions but increase blackouts. A higher tax induces quick retirement of coal plants
and more (and earlier) investment in renewable generators. Higher price caps can prevent the
increase in blackouts as a carbon tax increases; however, this comes at the cost of a greater
exercise of market power in firms’ investment decisions, which can result in lower product
market welfare for some values of the carbon tax.

When these tools are used together they can reduce both emissions and blackouts. I find
that a capacity payment of the size used in Western Australia (about 150 000 Australian
dollars (A$) per MW per year, or—dividing by the number of hours in a year—A$17.12
per hour per MW) and a carbon tax equal to the social cost of carbon proposed by the
U.S. Environmental Protection Agency (US$190/ton of CO2) reduces blackouts by 47.4% as
well as emissions by 41.1%, relative to a world without either policy.3 Together they can

3A capacity payment alone would reduce blackouts by 53.2% and increase emissions by 15.5%, while a
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achieve both reliability and environmental goals because blackouts and emissions depend on
different margins. The level of blackouts depends on the level of investment of different types
of generators. Emissions, however, depend on which of those generators are used to produce
electricity. Firms keep existing fossil fuel plants online while investing in renewables because
the payments cover the cost of maintaining generators, but the tax makes it unprofitable for
emissions-intensive generators to produce unless there is insufficient low-emissions capacity
available.

In practice, many electricity markets have adopted alternative environmental policy tools to
reduce emissions. I quantify the impact of two commonly-used alternative policies, namely
renewable investment and production subsidies. Renewable subsidies do not distinguish be-
tween emissions intensities of different types of generators. Since coal is roughly twice as
emissions-intensive as natural gas, one may expect that renewable subsidies are less efficient
at reducing emissions than a carbon tax. I find that for low levels of emissions reductions,
however, both types of renewable subsidies result in a lower cost of reducing emissions than a
carbon tax, measured in the distortion to product market welfare and government revenues.
This result is because these subsidies counteract the exercise of market power. Renewable
subsidies, however, cannot achieve as deep of emissions reductions, especially investment sub-
sidies, which target the investment margin rather than the production margin that determines
emissions.

Many environmental policies, such as clean vehicle standards or the EPA’s proposed power
plant regulations, have a delay between announcement and implementation to allow firms
time to respond. My model can handle nonstationary costs and also nonstationary policies.
It is therefore well-suited for analyzing the timing of a policy’s implementation. I study
the impact of delaying the implementation of a carbon tax following its announcement. By
delaying implementation, firms have time to respond to the new environment by investing in
renewables (as well as less emissions-intensive natural gas). This time to respond can yield cost
savings, as firms can avoid using high marginal cost generators when their set of generators is
high-emitting while they adjust their generator portfolios. I find that delaying the policy does
indeed yield cost savings, but firms simply delay their investments in renewables. Therefore,
delaying the policy also substantially increases emissions levels in both the medium- and (to
a lesser extent) even the long-run. Ultimately, I find that total welfare cannot be increased
by delaying implementation.

Related Literature This paper contributes to three main literatures. First, it contributes
to an empirical literature on electricity markets. This literature has primarily focused on
the short-run functioning of wholesale electricity markets, studying market design (Reguant,

carbon tax alone would decrease emissions by 45.3% and increase blackouts by 89.7%.
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2014), the impact of adding renewables to the grid (Gowrisankaran et al., 2016; Jha & Leslie,
2023; Karaduman, 2020b), the addition of utility-scale batteries (Karaduman, 2020a), and
power plant closures (Davis & Hausman, 2016; Kim, 2020). While this paper is related to these
papers, its focus is on investment. Most papers studying investment use a two-stage entry
model in which electricity-generating firms set capacity and then compete (Borenstein, 2005;
Borenstein & Holland, 2005; Castro-Rodriguez et al., 2009; Allcott, 2013; Linn & McCormack,
2019; Holland et al., 2022). These two-stage entry models are meant to simulate long-run
investment decisions but are unable to capture the transition period following a policy’s
implementation or the decline in the cost of renewable generators. The cost of renewables
is a key determinant to the emissions output of the industry, and retirements and entry in
the transition period are a key determinant of the likelihood of blackouts, necessitating the
fully dynamic approach that I take. My approach is therefore closely related to Butters et al.
(2021), Abito et al. (2022), and Gowrisankaran et al. (2022), which develop dynamic models
of investment in a limited set of technologies.

This paper also contributes to and connects the literatures on environmental policies and ca-
pacity payments. Several papers and reports (Larsen et al., 2020; Phadke et al., 2020; Stock &
Stuart, 2021) have characterized the costs and effectiveness of different environmental policy
tools using cost-minimizing capacity expansion models. These models, however, do not cap-
ture three features captured in this paper’s framework that are important for understanding
how environmental regulation impacts reliability: market power, response of demand over
the long run, and (since these models determine the least cost way to meet demand) black-
outs. Capacity payments, meanwhile, have been the topic of considerable debate about their
necessity for avoiding underinvestment (Hogan, 2005; Joskow & Tirole, 2008; Joskow, 2008;
Bushnell et al., 2017; Fabra, 2018), their impact on renewable investment (Llobet & Padilla,
2018; Mays et al., 2019), and their interaction with strategic behavior (Teirilä & Ritz, 2019;
McRae & Wolak, 2020). This paper speaks to these debates by quantifying the reduction
in blackouts that the policy yields, the distortions they cause, and the impact on renewable
investment in an imperfectly competitive environment. This paper combines these literatures
on environmental and reliability policies by studying the interdependence between the two
policies, finding that there are important complementarities.

Finally, this paper contributes to a literature studying environmental regulation in imperfectly
competitive environments (Buchanan, 1969). Two closely related papers are Ryan (2012)
and Fowlie et al. (2016), which empirically study the cement industry and also endogenize
investment and emissions. The electricity industry differs from that of cement because there
are many technologies in which to invest (e.g., coal, gas, wind, solar) and investment costs are
nonstationary. Moreover, because I observe a single market, the two-step conditional choice
probability estimator based on Bajari et al. (2007) used by the aforementioned papers would
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be infeasible. I therefore adopt a different modeling and estimation strategy, similar to Igami
& Uetake (2020), which also studies a non-stationary environment and observes only a single
market (mergers in the hard disk drive industry).

Outline The paper is organized as follows. Section 2 provides institutional details on the
Western Australia electricity market, describes the data, and presents descriptive statistics
about the electricity market. Section 3 presents the structural model, section 4 the estima-
tion method, and section 5 the estimation results. In section 6 I describe and present the
counterfactuals. Finally, section 7 concludes.

2 Institutional Details and Data

2.1 Western Australia Electricity Market

Western Australia’s Wholesale Electricity Market (WEM) supplies electricity to southwestern
Australia via the South West Interconnected System electricity grid, which includes the city
of Perth and the surrounding area. The grid is unconnected with the grid in the eastern part
of the country, meaning trade cannot occur between the WEM and other markets. Figure
8 in Appendix A.1 provides a map of this grid. As of 2023, the WEM serves approximately
1.1 million customers, supplying roughly 17 terawatt hours of electricity every year (WEM,
2023).

In September 2006, the Western Australian electricity industry went through a restructuring,
moving from a vertically-integrated utility company that generated, distributed, and sold
electricity to a “restructured” market with independent generators selling electricity. This
resulted in the creation of the WEM, which is operated by the Australian Energy Market
Operator. Following the restructuring, independent generators sell electricity to retailers.
This can either happen through bilateral contracts or through auctions, both day-ahead and
real-time (the latter of which began on July 1, 2012). The auctions determine production in
half-hour intervals and result in a market clearing price for every half hour. In addition to
these revenues from producing electricity, generators also receive yearly capacity payments,
described in detail in the following section.

In the WEM, almost all utility-scale electricity is generated by one of five technologies: coal,
open cycle gas turbines (OCGT), combined cycle gas turbines (CCGT), solar, and wind,
collectively making up 99.4% of all electricity generated.4 These technologies will therefore

4Western Australia also has substantial rooftop solar, as described in Jha & Leslie (2023), but I focus on
utility-scale generation. In the model developed in this paper, the adoption of rooftop solar is captured by
changes in the distribution in net demand (i.e., electricity demand less that which is supplied by rooftop solar)
over time.
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be the focus of this paper, abstracting away from less-used technologies in Western Australia
(e.g., oil or biomass) as well as technologies not currently used in Western Australia (e.g.,
nuclear or hydropower).

2.2 Capacity Payments: Background & Implementation

Capacity payments are yearly, recurring payments to electricity-generating firms in proportion
to their capacities and are not (typically) linked to their actual energy output. These payments
are therefore effectively a subsidy to capacity. The size of this subsidy, the capacity price (in
$/MW), usually varies from year to year. In some markets this price is determined by the
market operator, and firms are free to choose the amount of capacity that they commit.
In other markets, the grid operator chooses the amount of capacity and runs an auction to
determine the price. The WEM falls in the former group.5

Since the start of electricity market “restructurings,” when electricity generation was sep-
arated from transmission and distribution in many markets, electricity grid operators have
been concerned that independent generators might underinvest in capacity. This underinvest-
ment results in blackouts, which is a form of rationing during high demand periods.6 Many
electricity markets use capacity payments with the aim to prevent this underinvestment.

The WEM has used capacity payments since its commencement. The market uses a system
of allocating capacity credits called the “Reserve Capacity Mechanism.” A capacity credit
corresponds to a megawatt (MW) of certified electricity generation capacity that a firm com-
mits to make available in the wholesale market. The WEM chooses the price of a capacity
credit for a year, and firms choose a level of capacity for which to receive capacity credits.
This process occurs three years prior to when firms will receive payments (e.g., the capacity
price for 2020 is announced in 2017), allowing time for firms to build or retire capacity. The
price is based on a formula that depends in large part on the cost in that year of building
an open cycle gas turbine generator. Firms are then contractually obliged in the year of the
capacity payments to make available at least as much electricity as they have capacity credits
or otherwise pay a penalty.7

5It is more common to use the latter system; however, the optimal capacity prices that are determined in
this paper’s counterfactuals are informative for these systems too. These values suggest the level of monetary
support capacity auctions should yield if trying to maximize welfare (the exact form is provided in section 6).
If, instead, the exercise was to determine the optimal level of capacity (the choice variable of the grid operator
in the latter system), it is reasonable that this value would be more specific to a particular context and not as
generalizable to other markets.

6Rationing is necessary since electricity end-consumers do not pay the wholesale spot market price but
rather an average price charged by an electricity retailer. Demand is therefore unresponsive to the spot price,
so prices cannot be used to ration short-run demand for electricity. Instead, grid operators typically ration
electricity by geography in rolling blackouts.

7Making electricity “available” is not the same as actually producing that level of electricity. In practice,
firms bid quantities and prices in an auction with a price cap. Firms are required to bid at least as much
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2.3 Data

The data used in this paper primarily come from the Australia Energy Market Operator
(AEMO), which publishes data on the wholesale electricity markets, capacity payments, and
generator characteristics. I use data from October 1, 2006 through September 30, 2022. In
addition to the data published by the market operator, I use supplementary data on generator
characteristics, input prices, and other variables detailed below.

Half-Hourly Wholesale Market Data The data provided by AEMO on wholesale mar-
kets are at a half-hourly interval and include generator-level production, market clearing prices
in the auctions, load curtailed, and generator outages. Since demand is virtually inelastic, I
use as the demand for electricity in that interval the sum of the production from each genera-
tor plus the load that is curtailed. For each interval, there are two market clearing prices, one
from the day-ahead auction (called the “short-term energy market”) and the other from the
real-time auction (called the “balancing market”). For the analysis in this paper, I use the
market clearing prices from the balancing market. Generator outages are a measure of the
capacity unavailable to each generator in an interval. Two measures of outages are reported:
an ex ante level and an ex post level. I use the ex post measure of generator outages. In
addition to the wholesale market data provided by AEMO, I collect the history of prices of
coal and natural gas in Western Australia from the Western Australian Department of Mines,
Industry Regulation, and Safety’s 2022 Major Commodities Resources dataset.

Yearly Market Data Capacity payments, price caps, and retail electricity prices all vary at
a yearly frequency. Capacity payments are composed of a capacity price and the commitments
of each generator, both of which are reported by AEMO. These payments correspond to a
year running from October 1 through September 30 of the following calendar year. I adopt the
same year naming convention in this paper (e.g., intervals in January 2020 will correspond
to the year 2019 for the purposes of estimation and counterfactuals). Price caps limit the
maximum bids of firms in the wholesale auctions. Retail electricity prices correspond to the
prices paid by residential consumers for electricity. These prices are regulated and change
on July 1 of each year and correspond to a fixed and variable component. I hand collect
these prices from yearly reports from Western Power (the entity responsible for operating
the network).8 For my analysis, I use the variable component, as this is the component that
enters consumers’ consumption decisions.

electricity as they have capacity credits, with no limit on the prices other than a universal price cap. Renew-
ables are allowed to receive capacity payments; however, they typically commit only a small fraction of their
nameplate capacities, and so in the model I treat only non-intermittent technologies as eligible.

8The specific tariff that I collect is Reference Tariff 1, which is for residential consumers.
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Figure 1: Capacities & Shares over Time
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Note: Shares are calculated based on total amount of electricity produced over the year, running from
October 1 through September 30 of the following year (consistent with the definition of years used by the

WEM for capacity markets). Named firms in the rightmost subplot are those with a market share of at least
10% over the course of the sample. All others are aggregated into “others.”

Generators AEMO provides the identities of each generator, the technology, and the firm
that owns the generator. I take as the date of entry and exit the first and final days of
production, respectively. I infer capacities from production in the wholesale market, using the
maximum amount of electricity I ever observe a generator produce in the sample. To capture
a generator’s production costs, I require a measure of the generator’s heat rate (the amount of
energy needed to produce a MWh of electricity). Heat rates and (closely related) greenhouse
gas emissions rates are not provided by AEMO. Instead, I use SKM (2014), an engineering
report that included the heat and emissions rates of many of the WEM’s generators. For a
few generators, the heat rates in the report are withheld for confidentiality reasons. In those
cases, I use the heat rate estimates of Jha & Leslie (2023). A list of all generators used in
this paper’s analysis can be found in Appendix A.2. As explained in that section, some small
generators are dropped from the analysis, specifically those with a capacity less than 20 MW
for renewables and 100 MW for fossil fuel plants.

Table 1 summarizes the data described above.

Data Patterns Figure 1 depicts the evolution of several key variables across time. The first
subplot depicts capacities across time by technology. The period following the restructuring
of Western Australia’s electricity market witnessed new investment in fossil fuels, including
both natural gas and coal. Following 2010, however, there was no new investment in coal,
and several coal plants were retired. New investment at the end of the sample has come
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Table 1: Summary Statistics

Mean Std. Dev. 5th Pctile. 95th Pctile. Num. Obs.

Half-hourly variables
price (A$/MWh) 49.51 32.11 21.54 106.99 179 712
total production (MWh) 970.69 199.70 679.75 1 331.95 280 512
load curtailed (MWh) 0.03 2.20 0.00 0.00 280 512
fraction generated by

coal (%) 50.99 8.88 35.16 64.62 280 512
natural gas (%) 39.48 8.07 26.36 53.02 280 512
solar (%) 0.37 1.41 0.00 1.94 280 512
wind (%) 9.17 8.28 0.68 26.67 280 512

fraction capacity available
coal (%) 83.28 34.67 6.62 100.00 3 217 200
natural gas (%) 92.34 24.03 14.40 100.00 5 927 856
solar (%) 13.06 24.40 0.00 81.67 221 040
wind (%) 36.45 29.98 0.00 89.85 1 351 488

Yearly variables
capacity price (thousand A$/MW) 125.68 32.68 71.85 183.17 18
price cap (A$/MWh) 277.85 49.20 214.60 350.41 16
retail price variable component (A$/MWh) 81.26 12.22 59.82 97.07 15

Generator variables
capacity

coal (MW) 161.83 79.17 58.37 251.14 17
natural gas (MW) 148.40 97.64 42.28 345.22 23
solar (MW) 69.98 30.18 42.82 97.14 2
wind (MW) 122.40 67.25 33.58 211.92 8

heat rate
coal (GJ/MWh) 10.75 0.81 9.70 11.70 17
natural gas (GJ/MWh) 11.70 1.65 9.00 13.50 23

CO2 emissions rate
coal (kgCO2-eq/MWh) 916.47 61.90 850.00 1 028.00 17
natural gas (kgCO2-eq/MWh) 633.46 82.55 471.60 754.42 23

Note: All prices in this table and presented in this paper are in 2015 A$. Prices are converted to 2015 A$
using the consumer price index from the Australian Bureau of Statistics. The number of observations for
prices is smaller than that for other half-hourly variables because the prices used come from the balancing

market, which only began on July 1, 2012.

in the form of renewables, both wind and—to a much smaller extent—solar.9 The second
subplot depicts production shares over time by technology and more clearly demonstrates the
transition to renewables. The share of electricity produced using coal has declined almost
every year, while renewables have made up an increasing share, making up over 20% in 2021.

The production of electricity in Western Australia is quite concentrated, although it has
become less so over the sample, as depicted in the third subplot. Following the restructuring of
Western Australia’s electricity market, the firm Synergy became the owner of the vast majority
of electricity generators in the market and therefore also the main producer of electricity. In

9Capacities and production shares in figure 1 depict utility-scale capacities and production. Western Aus-
tralia has recently experienced substantial adoption of rootop solar, which impacts the net load on the grid
but is not captured by any of the variables depicted in figure 1.
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Figure 2: Production Shares throughout the Day and over Time
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Note: Average hourly production across the course of the day is depicted in each subplot, which corresponds
to a year running from October 1 to September 30 of the following year (consistent with the definition of
years used by the WEM for capacity markets). Prices (right y-axis) are averages across the year for that

interval in the day, unweighted by the production in that interval. The first year depicted is 2012, the first
complete year following the start of the balancing markets.

the years following the restructuring, Synergy’s market share has declined substantially from
a very high initial share. While the market share of the next largest firm, Alinta, has grown
moderately in the final years of the sample, the majority of the decline in Synergy’s share
has come from the entry of the third largest firm, Bluewaters Power, and from other smaller
firms.

Figure 2 depicts the evolution of the share of electricity produced by different sources and
average wholesale electricity prices over the course of the day. The distribution of demand
has changed over time, and toward the end of the sample is lowest precisely when solar is
available (a phenomenon observed recently in many markets with substantial rooftop solar
adoption, called the “duck curve”). Prices are also particularly low during this time. This
figure highlights the importance of capturing in the structural model how these variables evolve
over time and the correlation among them. For example, the negative correlation between
demand and solar availability that arises at the end of the sample leads to low wholesale
prices, reducing the incentives for investment in solar.

3 Model

In order to predict the impact of electricity market policies, I develop a model of electricity
production and investment in electricity generators. The model captures short-run electricity
production, how the distribution of demand responds to wholesale market prices, and long-run
investment. In the short-run wholesale market, firms use a fixed set of generators to produce
electricity to supply the demand for electricity in a given interval. Since end-consumers who
determine the demand pay an average price for electricity rather than the wholesale spot
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market price, this demand is perfectly inelastic with respect to the spot market price. In
the long-run, these firms can make costly adjustments to that set of generators. Since the
distribution of the demand for electricity does respond to the average wholesale price, the
level of investment also impacts the distribution of demand.

Before introducing each component of the model in detail, I provide some notation that is
common to all components. Generators are indexed by g, and each generator belongs to a
firm f . A firm can be large, in which case it has the ability to own many power plants,
or small, in which case it can only own a single power plant.10 Generators vary in several
other dimensions, including the production technology s (g) ∈ {coal, natural gas open cycle,
natural gas combined cycle, wind, solar}, the capacity Kg, the heat rate hrg, and the carbon
emissions rates eg. Wholesale markets occur in intervals at the half-hourly level, indexed by
h, and each interval h belongs to a year t (h). In a year t, there is a set of generators in the
market Gt and a distribution of demand Qt. Table 11 at the end of this paper provides a list
of all parameters used in this section.

3.1 Short-run: Wholesale Market

Firms enter a wholesale market in a half-hour interval h with a fixed set of generators Gt(h).
At the beginning of the interval, several time-varying variables are realized: the effective
capacities of each generator (after accounting for generator outages and intermittency of
renewables), the costs of producing electricity, and the demand for electricity. Firms then
choose bids for each of their generators, and the grid operator determines the price that clears
the market. If no such price exists (i.e., demand exceeds the available capacity), then some
consumers are rationed up to the point that there exists a market-clearing price.

3.1.1 Model Primitives

Available Capacities The fractions of generators’ capacities that are available in interval
h is given by δh, which is stochastic and potentially correlated across generators. I refer
to δgh as a generator’s capacity factor.11 Generator g ∈ Gt(h) therefore has a maximum
production capacity in that interval of K̄gh = δghKg, where δgh ∈ [0, 1]. The available
capacity K̄gh ≤ Kg reflects that a generator cannot always produce at its nameplate capacity
Kg, which is the maximum level of production possible under ideal circumstances. Available
production capacities depend on wind speeds and sun availability for renewables, causing
them to be able to produce only a fraction of their nameplate capacities. Thermal generators,

10Power plants are made up of potentially multiple generators, so a small firm may have multiple generators,
but those generators all belong to a single power plant.

11Note that sometimes the term capacity factor is used to refer to the fraction of nameplate capacity used
for production. I use the term in this paper to refer to the fraction of nameplate capacity that is available, but
production may be lower than that if a generator does not produce in some intervals.
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meanwhile, may also have available capacities less than their nameplate ones due to generator
outages.

Production Costs Each generator g has a constant marginal cost (in A$ / MWh) of
producing in interval h, which is stochastic and given by cgh. This cost reflects the purchase
of inputs (such as natural gas for a gas generator) and the efficiency of generation (which can
vary across generators and also over time based on factors such as the temperature).12 The
marginal cost is given by

cgh = hrgpinput
s(g),h + τt(h)eg + εgh, (1)

where pinput
sh is the price of the input corresponding to technology s in interval h, τt is the

carbon tax in year t, and εgh is a generator g-specific cost shock. The cost shock captures
idiosyncratic factors. These could arise due to prices in firms’ natural gas or coal contracts
deviating from the spot price captured by pinput

sh , for example, or from unmodeled features that
influence production decisions such as forward contracts, transmission constraints, minimum
operating capacities, or start up and ramping costs. Some of these features have been modeled
explicitly by other papers (e.g., start up and ramping costs in Reguant (2014) or transmission
constraints in Gonzales et al. (2023)) but would be very difficult to include within a dynamic
model of investment that requires simulating wholesale markets an extremely large number of
times. The cost shocks provide a way to capture these features, albeit in a reduced form way,
which is why they are included even though most papers simply use “engineering costs” (i.e.,
the components in equation 1 other than the cost shock). Since the distribution of these cost
shocks for each generator technology is assumed to be invariant to policies, I am assuming
that any unmodeled cost components captured by these shocks are constant as the mix of
generators in the market changes.

Demand Consumers in interval h demand Q̄h MWh of electricity, which is stochastic and
invariant to the wholesale spot market price in interval h since consumers do not pay real-
time prices. This quantity comes from consumers’ making consumption decisions, described
in more detail in section 3.2, with a price for electricity that does not depend on any particular
realization of the stochastic elements described above.

The stochastic variables described in this section may be correlated not only across generators
but also across these variables. For example, weather can impact available capacities and also
the demand for electricity. I allow for correlation among all these variables, drawn from the

12Generators also have fixed costs, reflecting labor and other components that do not vary with the quantity
produced. These costs are introduced in the long-run component of the model and do not affect firms’ bidding
decisions.
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following distribution:
δh, ch, Q̄h ∼ F δ,c,Q̄

t(h) .

This distribution is allowed to vary by year in order to capture trends in input prices and
changes in demand due to residential solar panel adoption, changes in population, electric
vehicle adoption, etc.

3.1.2 Market Clearing

Firms submit a bid bgh in each interval for each of their generators. In order to clear the
market, the grid operator finds the lowest price such that the sum of the available capacities
of the generators with bids below that price exceed demand for electricity. This is simply the
price at which supply meets demand, given by the following formula

Ph

(
b, Q̄h

)
= min

 min
P :

∑
g:bgh≤P

K̄gh≥Q̄h

{
P
}

, P̄t(h)

 . (2)

There are two deviations in equation 2 from the market clearing price Ph being any price that
compels firms to produce the full demand realization. The first is that the price is constrained
to be less than a price cap P̄t(h), captured by the outer minimum function. Second, there
may not be sufficient available capacity to meet the realization of demand. In that case, there
will be rationing—some consumers experience a blackout—and the price defaults to the price
cap since there is no price that induces sufficient production (the feasibility constraint in the
inner minimum function). Both of these deviations are described in more detail below.

Price Caps Virtually all restructured electricity markets utilize price caps, which prevent
the wholesale market price from rising above some threshold. These price caps imply that
the relevant available capacity is not necessarily the sum of generators’ available capacities
but rather the sum of available capacities with bids below the price cap. This is imposed
in the market clearing condition (equation 2) by the outer minimum, which ensures that the
wholesale price Ph is below the price cap in that year.

Insufficient Capacity Because demand is invariant to the spot price and the capacity
available has a hard cap, if demand exceeds the capacity available, consumers will need to
be rationed. This rationing is captured by the function Qh

(
b, Q̄h

)
, the demand satisfied,

defined as

Qh

(
b, Q̄h

)
= min

Q̄h,
∑

g:bgh≤P̄t(h)

K̄gh

 . (3)
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If there is sufficient available capacity with bids lower than the price cap, the market will be
able to satisfy all demand Q̄h; otherwise, it satisfies only a fraction of that demand, and

Bh

(
b, Q̄h

)
= Q̄h − Qh

(
b, Q̄h

)
(4)

will be rationed via blackouts, and the affected consumers will not be able to consume any
electricity.

Firm Behavior The amount of electricity that each firm produces depends on its bid and
those of other firms, as well as the realization of demand. Explicitly, the amount produced
by generator g in interval h, qgh, is given by

qgh

(
b, Ph, Q̄h

)
=


K̄gh if bgh < Ph

Qh(b,Q̄h)−
∑

g:bgh<P̄t(h)
K̄gh∑

g:bgh=P̄t(h)
K̄gh

K̄gh if bgh = Ph

0 if bgh > Ph.

(5)

The first case captures inframarginal generators with bids below the wholesale spot price,
which provide all of their available capacity. The second case captures marginal generators
with bids that set the spot price; they produce a fraction of their available capacity, propor-
tional to the fraction of electricity supplied by the marginal generators. The last case captures
generators with bids above the spot price, which do not produce any electricity in interval h.
The profit that each firm receives is therefore given by

πfh

(
bh, Q̄h

)
=

∑
g∈Gf,t(h)

qgh

(
b, Ph

(
bh, Q̄h

)
, Q̄h

) (
Ph

(
bh, Q̄h

)
− cgh

)
. (6)

I assume that firms set their bids equal to each generator’s marginal cost of production. This
assumption that firms bid competitively is motivated by three facts. First, in restructured
electricity markets, firms can bid supply (step-)functions. Theoretically, the resulting supply
function equilibrium is bounded between the competitive and Cournot equilibria (Klemperer
& Meyer, 1989). The supply function equilibrium is generally computationally intractable
(and can have a multiplicity of equilibria), but the competitive equilibrium is likely to be a
good approximation for this type of equilibrium. This is because whether the supply function
equilibrium more resembles the competitive or the Cournot equilibrium depends on the steep-
ness of the supply function bids. The supply function bids in the data tend to be quite flat,
suggesting that the equilibrium is close to the competitive one.13 The assumption of compet-

13Taking for each facility and each generator or firm (depending on whether the firm bids at the generator-
or firm-level) the difference between the highest bid under the price cap and the lowest and dividing by the
total quantity of electricity bid yields an average slope of A$0.31/MWh.
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itive behavior has been commonly used in other papers with models of wholesale electricity
markets (e.g., Abito et al. (2022) and Gowrisankaran et al. (2022)).

Second, forward contracting—the signing of advanced contracts between electricity generating
firms and retailers—limits the incentive to exercise market power. Because firms precommit
to prices for some of the electricity they produce, this limits the quantity subject to the
wholesale price they can potentially influence in their bidding decisions. Their incentive to
raise prices in the wholesale market is therefore reduced. A large fraction of electricity is
procured via forward contracting (Reguant (2014) estimates about 85% of the quantity that
is sold in the day-ahead market is forwarded in Spain, and Wolak (2007) finds about 88% is
in the National Electricity Market in Australia in the eastern part of the country), suggesting
limited incentives to bid above margainal costs.

The third reason that the competitive bidding assumption should well-approximate equilib-
rium behavior is because the grid operator can punish firms for above marginal cost bidding.
Because marginal costs depend mostly on heat rates and input prices, grid operators have a
strong signal about generators’ marginal costs. In Western Australia, the grid operator can
fine firms that they demonstrate have bids above their marginal costs. For example, in 2019
the Economic Regulation Authority found that Synergy overstated its costs and required it to
pay a substantial fine. While this example may suggest that historically firms have attempted
to exercise market power, the example also demonstrates that these regulations are utilized
and firms are constrained in their ability to pursue above-marginal cost bidding.14 Grid op-
erators do not, in contrast, generally have the ability to punish firms for exercising market
power in their investment decisions, which is why the model of investment presented later in
this section allows for strategic behavior at that stage.

Bids are therefore given by15

b∗
gh = cgh. (7)

14There is a literature that looks at strategic behavior in wholesale market bidding. While some of these
papers have found a significant impact on prices from the exercise of market power (Wolfram, 1999; Borenstein
et al., 2002; Sweeting, 2007; Bushnell et al., 2008), these papers have tended to study settings early after
restructuring, during which mechanisms limiting the exercise of market power were not employed (e.g., lack of
forward contracting in California).

15One may be concerned that if a generator has the highest marginal cost in the market, it will be unable
to recover its fixed costs under the assumption of competitive bidding. In that case, a firm would be unwilling
to invest in the generator. However, every generator achieves strictly positive profits in expectation—even
without capacity payments—for two reasons. First, the cost shocks ensure that in some intervals the generator
will be inframarginal with a marginal cost less than the market clearing price. Second, when demand exceeds
the available capacity, the market clearing price is the price cap.
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3.2 Medium-run: Retail Price Equilibrium

The wholesale market clearing conditions defined by equations 2 and 7 yield a distribution
of wholesale market spot prices since the prices depend on available capacities, production
costs, and demand, which are all stochastic. While the realized demand is inelastic with
respect to the spot price, demand does respond over the long run to wholesale prices since
they ultimately enter the end-consumer retail prices that consumers pay for electricity. More
precisely, these end-consumer prices are based on the average wholesale price, which impacts
the distribution of possible demand realizations. This means that consumers do not respond
in their consumption choices to the spot price in a particular interval, but they do respond
to changes in the distribution of prices.

Consumer’s Problem Each consumer i in interval h chooses how much electricity to
consume, q, based on the end-consumer price they face. Consumer i has an indirect utility in
a given interval h of

uih

(
q, Pt(h)

)
= ξih

1 − 1/ϵ
q1−1/ϵ − Pt(h)q, (8)

where Pt(h) is the end-consumer retail price per unit of electricity consumed (rather than
the wholesale price that varies with the interval h). It is constant over the course of a year.
The utility function is scaled such that the marginal utility of money is 1. The parameter
ξih captures consumer i’s value of electricity consumption relative to money and varies across
intervals. The parameter ϵ controls the concavity of the utility function with respect to
electricity consumption q.

The consumers’ first order conditions imply that the optimal electricity consumption is

q∗
ih

(
Pt(h)

)
=
(

ξih

Pt(h)

)ϵ

.

Aggregating across consumers, the aggregate demand for electricity is given by

Q̄h

(
Pt(h)

)
=
∫ (

ξih

Pt(h)

)ϵ

di = Ξh

P ϵ
t(h)

, (9)

where Ξh =
∫

ξϵ
ihdi is an aggregation of consumers’ values of electricity in interval h. It varies

across intervals, capturing changes in the value of electricity consumption across intervals
(e.g., people desire more electricity on hot days, during the day vs. at night, etc.).16

16Note that it is not necessary to take a stance on the distribution of ξih and the degree of correlation across
individuals. What matters for the distribution of demand is the distribution of Ξh, not ξih. This is also true
for determining consumer surplus and the cost of blackouts. In the case of blackouts, the exact distribution of
ξih does not matter apart from yielding Ξh because consumers are rationed randomly and not by how much
they value electricity.
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Equilibrium Consumers buy electricity from intermediaries. I assume that these interme-
diaries set retail prices equal to the marginal cost of providing electricity over the long-run,
averaging over the prices in the wholesale markets. This assumption is motivated by the fact
that in Western Australia residential consumers buy electricity at regulated retail electricity
prices. Retail prices are therefore given by

Pt (P avg
t ) = P avg

t + cretail, (10)

where P avg
t is the quantity-weighted average wholesale price and cretail is the marginal retail

cost of delivering electricity (e.g., providing customer services, using the network to deliver
electricity, etc.). The quantity-weighted average wholesale price is given by

P avg
t = E [QhPh]

E [Qh] . (11)

The average wholesale price depends on demand, and demand depends on the average whole-
sale price. The equilibrium with respect to retail prices is defined as a price Pt such that

Pt =
E
[
Qh

(
Q̄h (Pt) , Gt

)
Ph

(
Q̄h (Pt) , Gt

)]
E
[
Qh

(
Q̄h (Pt) , Gt

)] + cretail, (12)

where we have made explicit the dependence of satisfied demand and wholesale prices on Pt

as well as the generators in the market Gt.

We can define the function mapping the set of generators to the retail price, Pt : Γ → R,
where Γ is the set of all possible generator combinations. Additionally, we can define a similar
mapping of generators to profits that takes into account the equilibrium end-consumer prices
(and therefore demand), πh : Γ → RF , as

πfh (Gt) = πfh

(
b∗

h (Gt) , Q̄h

(
Pt(h) (Gt)

))
∀f. (13)

3.3 Long-run: Generator Investment

Each year t, firms enter with a set of generators inherited from the previous year Gt−1. The
firms can choose to make costly adjustments to their sets of generators by adding new ones
and/or retiring existing generators. After (dis-)investment decisions are made, the newly
updated set of generators, Gt, is used in a series of many wholesale electricity markets (one
for each half-hour), providing firms with a stream of profits. This chosen set of generators
impacts the profits that firms receive, as well as the levels of emissions and the frequency of
blackouts.
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Firms are forward-looking as they make investment decisions, and they are strategic in these
decisions, taking into account the impact their decisions have on the market. The standard
empirical model of oligopolistic industry dynamics is Ericson & Pakes (1995), which is a
stochastic dynamic game in which firms make simultaneous moves and face an infinite horizon.
I do not adopt an Ericson & Pakes (1995)-type modeling approach to the investment game
for a few reasons. First, this model can yield multiple equilibria, coming from nonuniqueness
of the stage game or through expectations over future values. Many papers have been able
to empirically analyze industry dynamics even in the presence of this multiplicity. This
feature is particularly problematic for my setting, however, since data limitations prevent
me from taking a non-parametric two-step estimator approach (discussed in more detail in
section 4.2), as is common for estimating this style of dynamic games. Second, estimation is
difficult with the standard modeling approach to dynamic games when the setting exhibits
nonstationarity.17 Rapidly declining costs of building new renewable generators introduce a
source of nonstationarity that is a first-order concern for modeling investment.18

The modeling approach that I take to investment decisions is that of a nonstationary, randomly-
ordered sequential moves dynamic game with lock-in. Firms make (dis-)investment decisions
sequentially in each period, and the order of these moves is random and independent across
periods.19 After some specified length of time, firms decisions are locked in. After that lock-
in period, firms cease to be able to adjust their sets of generators. They continue to receive
profits from those generators for all eternity, but that game is effectively a static one without
dynamic considerations. These modeling assumptions are similar to and inspired by those
of the model in Igami & Uetake (2020), which studies endogenous mergers in the hard drive
disk industry. In that model, one firm is randomly selected to move in each period, and the
continuation value after a particular end date is 0 (because the hard drive disk industry will
cease to exist).

These modeling choices capture firms’ dynamic and strategic incentives and also have some
advantages that make it well-suited for considering investment in electricity generators. First,
with sequential moves and a lock-in date that effectively creates a finite horizon, the invest-
ment game yields a unique equilibrium. Second, the game easily incorporates nonstationarity
(and is, in fact, by definition nonstationary because there is a lock-in date), allowing me
to incorporate nonstationary generator costs and also simulate nonstationary counterfactual

17For two-step estimation approaches, estimation would require estimating choice probabilities in each period
that exhibits nonstationarity, which is not feasible in my setting.

18Other sources of nonstationary present in this setting include the distribution of demand (due, in particular,
to the rapid rise in rooftop solar, resulting in low net demand during the middle of sunny days).

19While one may worry that a model of random, sequential moves may imply significantly different behavior
from one of simultaneous moves, Doraszelski & Judd (2019) find that in a quality ladder model they consider,
the equilibria of dynamic games with random, sequential moves are “practically indistinguishable” from those
of simultaneous moves (albeit in an infinite horizon setting rather than one with lock-in).
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policies (e.g., environmental policies that go into effect only after some date). Third, the
game can be solved via backward induction, which makes equilibrium computation relatively
easy. This computational tractability allows me to consider a rich set of possible policies in
order to determine optimal environmental and reliability policy. It also makes estimation via
maximum likelihood feasible.20

3.3.1 Per-Period Model Components

Conditional on a set of generators Gt in the market, firms receive a stream of profits from the
wholesale markets over the course of the year. The function mapping Gt to yearly expected
profits, Πt : Γ → RF , is based on the wholesale profit function πh (·) defined in equation 13,
and is defined as

Πft (Gt) = Eδ,c,Ξ

[
H∑

h=1
πfh (Gt)

]
∀f. (14)

This sums over expected profits from the wholesale market over the year.The expectation is
taken over available capacities, production costs, and demand, which all vary with h.

In addition to wholesale profits, firms receive capacity payments over a year as a function
of their generators’ capacities.21 I model these payments in a simple way based based on
the rules guiding the electricity market in Western Australia. The grid operator chooses a
capacity credit price κt for year t, which is in A$ / MW. Firms receive payments based on
this price in proportion to the amount of dispatchable capacity they own (that is, coal and
gas plants).22 Over the year t, a firm f receives a payment Υ (·) based on its set of generators
and the capacity credit price. Explicitly,

Υ (Gft; κt) =
∑

g∈Gft

κtKg1 {g ∈ {coal, CCGT, OCGT}} . (15)

20The model in Igami & Uetake (2020) with similar timing and horizon assumptions yields the same proper-
ties, and the authors make these modeling choices for similar reasons as me, facing the same data limitations
and a nonstationary setting.

21That the payments depend on capacity rather than production follows the capacity payment rules adopted
by the WEM. Subsidizing capacity but not mandating production is extremely common in markets that use
capacity payments. There are electricity markets that have experimented with policies that more strongly
incentivize production, such as that of Colombia, which is studied in detail by McRae & Wolak (2020). How
to design capacity payments to incentivize production is an interesting question; however, I do not study it in
this paper.

22The WEM allows all generators to participate in its capacity market and choose how many capacity credits
to receive; however, there are penalties for being unavailable. Coal and gas plants are very rarely unavailable,
while renewable sources are. Coal and gas plants therefore tend to commit all of their capacity and rarely have
to pay penalties, while renewable generators tend to commit very little of their capacity. I therefore take a
simplified approach to modeling capacity payments that corresponds very closely to the result of the WEM’s
rules by assuming coal and gas plants receive capacity credits for all of their generators’ capacities (and do not
have to pay unavailability penalties), while renewable plants do not receive capacity credits for any of their
generators’ capacities.
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Finally, firm f must pay a cost for maintaining its generators, given by

M (Gft) =
∑

g∈Gft

ms(g)Kg. (16)

This cost is technology-specific and in proportion to a generator’s capacity. It captures costs
related to generators that are fixed with respect to the amount of electricity produced over
the course of the year. It therefore does not depend on generators’ levels of production and
makes unused capacity costly.

3.3.2 Investment Decisions

At the beginning of each year t ≤ T , where T + 1 is the year the set of generators is locked
in, Nature randomly selects an ordering of firms Ωt. Firms then sequentially, according to the
ordering Ωt, adjust their sets of generators and receive profits and payments from the new
set, which then carries over into the next period. Large firms (those that can have multiple
power plants) move first, though in a random order, followed by small firms (those that can
only have at most one), again in a random order.23 All orderings with this structure have an
equal probability of occurring. When a firm is selected to move, it knows which firms moved
before it and what adjustments they made; however, it does not know the order of the firms
that move after it, only which firms still have yet to move.24

We will introduce firms’ investment decisions using the value function at a particular point in
this ordering. Denote by X the set of firms that have already adjusted and the firm now able
to adjust, f . The firm f is therefore the |X|th firm to adjust. Firm f ’s expected value function
when X\ {f} have already adjusted and it is able to adjust is denoted by V X

ft (Gf ; G−f ), where
G−f reflects the adjustments already made. Firms F\X still have yet to adjust. This function

23Explicitly, Ωt ∈ SFL ×SFS , where SA is the symmetric group on A (i.e., all permutations of the elements
in A).

24This modeling choice is made for two reasons. First, it captures that in reality while investment decisions are
often made in sequence (not simultaneously), firms are unlikely to know which other firms will make decisions
immediately following them (i.e., they do not know the specific ordering). Second, this modeling choice is
computationally more tractable, as we only need to compute choice probabilities for each state conditional
on the set of firms X still needing to move rather than choice probabilities for every permutation of X. At
the estimated parameters, the model generates extremely similar choice probabilities under the alternative
assumption that firms know the ordering of the firms that move after them within a year.
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is given formally below, and a description of the function is given afterward.

V X
ft (Gf ; G−f ) = maxG′

f
∈Γf (G)

{
EηF\X ,Ωt|X

[
Πft

(
G′

f ; GX\{f}, σΩt

F\X,t

(
G′

f , G−f , ηF\X

))
+Υ

(
G′

f ; κt

)
−M

(
G′

f

)
−
∑

g∈G′
f

Cs(g),tKg1 {g ̸∈ Gf }
+ηf,G′

f
,t

+βWf,t+1
(
G′

f ; GX\{f}, σΩt

F\X,t

(
G′

f , G−f , ηF\X

)) ]}
.

(17)

When firm f is selected to adjust, it knows the firms in X other than it have already adjusted,
and it chooses any new set of generators within its feasible set Γf (G) (described in detail later)
to maximize its expected value. The firm takes an expectation over both the order of the firms
that have yet to adjust (Ωt | X) as well as private information shocks to their adjustment
costs (ηF\X). The firm receives expected profits from the wholesale markets (Πft (·)), in which
it is subject to its new, adjusted set of generators. Firms F\X still will adjust before the
wholesale markets begin, so firm f takes an expectation over what set of generators they will
choose, given by the policy function for the firms σΩt

F\X,t

(
G′

f , G−f , ηF\X

)
. The second term

is the net capacity payment that the firm receives with its adjusted set of generators. The
third term is the cost of maintaining its adjusted set of generators. The fourth and fifth terms
represent the adjustment cost. The fourth term captures the cost of building new generators,
where Cst is the cost (per MW) of construction of technology s in year t, and it scales with
the size of an increase in capacity. The fifth term is a private information, idiosyncratic cost
shock. It represents land acquisition costs, permitting, interconnection, and anything else
that is difficult for firms to predict. The final term is the continuation value, carrying the set
of generators over to the next period.

The value Wft (·) in the continuation value is the value function prior to the realization of the
ordering. It is given for a firm f by

Wft (Gf ; G−f ) = Eη,Ωt

[
V

Xf (Ωt)
ft

(
Gf ; σΩt

Xf (Ωt)\{f},t

(
G, ηXf (Ωt)\{f}

)
, GF\Xf (Ωt)

)]
, (18)

where Xf (Ωt) is the set of firms that have adjusted prior to f (and including f) under ordering
Ωt, i.e.

Xf (Ωt) =
{

f ′ ∈ Ωt : f ′ ∈ { ω1t, ω2t, . . . , f }
}

,

where ωnt is the nth element of Ωt. This expected value function is the expectation of the
value function in equation 17 with respect to the ordering and cost shocks.

Note that the adjustment to the set of generators is immediate; when a firm adjusts its
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generators at the beginning of the year, it is able to use that adjusted capacity for all of the
wholesale markets in that year. This timing assumption is motivated by when capacity prices
are announced in Western Australia and how long it takes to build power plants. Capacity
prices are announced three years prior to when they take effect.25 The choice of three years
notice is partially to give firms time to build new generators in response to the capacity
price. While different technologies take different amounts of time to build, three years is
approximately sufficient for a firm to make adjustments. By allowing generators to come
online in the same year that a capacity price goes into effect, I am capturing the effect of
pre-announced capacity prices and time-to-build.26

Regarding firms’ beliefs, I assume that firms have perfect foresight over the path of future
generator costs, the path of the distribution Ft (which includes input prices, capacity factors,
and demand shocks), and capacity prices. Since there is no uncertainty in these variables,
they are simply included in the time dimension of the state.

Final Period of Adjustment Firms adjust their sets of generators for the final time in
year T . In all periods t > T , firms continue to compete in wholesale electricity markets with
the set of generators GT chosen in year T . This is simply a static game repeated over time.
Therefore, the value in year T + 1 is given by

Wf,T +1 (Gf ; G−f ) =
∞∑

t=T +1
βt−T −1

(
Πft (Gf ; G−f ) + Υ (Gf ; κt) − M (Gf )

)
. (19)

Given the final period defined above, we can solve for the (unique) equilibrium of this game
using backward induction.

Choice Set The choice set for a firm f depends on its current set of generators, given by
Γf (G) in equation 17. For each of its technologies, a firm is assumed to be able to make an
adjustment of either building or retiring (depending on the technology) one power plant.27

Technologies are either expandable or retirable. Existing coal and open cycle natural gas can
be retired (“retirable”), while combined cycle natural gas, new open cycle natural gas, wind,

25Other electricity markets that use capacity payments have similar lags in the determination of capacity
prices and when they take effect.

26A slightly more realistic model may have a state space that keeps track of this year’s capacity price as well
as the next three, as well as this year’s generators and those that will come online in the next few years. I do
not adopt this modeling choice because it would be computationally intractable to use such a large state space,
and differences in time-to-build across different technologies are unlikely to have a meaningful impact on the
results since the time-to-build of the technologies used in Western Australia are not dramatically different.

27An alternative way of modeling investment would be as a continuous capacity decision rather than discrete
power plants. I opt to model power plants discretely in order to account for the fact that there is heterogeneity
in generators (e.g., older generators tend to be less efficient). This is important for capturing the impact that
a carbon tax would have since it would not impact all generators of a given technology the same way if there
are a substantial number of legacy power plants, as there is in Western Australia and most markets.
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and solar can be built (“expandable”).28 For example, if a firm uses both coal (retirable) and
combined cycle natural gas (expandable), it can either (1) do nothing, (2) retire a coal plant
and keep natural gas the same, (3) keep coal the same and build a gas plant, or (4) retire a
coal plant and build the gas plant. The firm cannot, however, retire two coal plants or build
two gas plants in a given year, since it can only adjust one plant for each technology in a
given year.29

In addition to whether to adjust a technology, the firm decides which of the plants to adjust.
I assume that all of firm f ’s plants of a given technology have the same adjustment cost shock
conditional on an adjustment decision (i.e., ηf,retire coal plant 1,t = ηf,retire coal plant 2,t). The idea
behind this assumption is that the idiosyncratic component of the cost (e.g., labor cost shock
of decommisioning the coal plant, land acquisition cost shock for a wind farm, etc.) is the same
cost regardless of which plant of the same technology it is applied to. This simplifies the choice
set considerably. Combined with the assumption that a firm can only make an adjustment
to one plant for each technology in a given year, conditional on adjusting the technology, the
firm will either build the most profitable one (in the case of an expandable technology) or
retire the least profitable one (in the case of a retirable technolgy). We therefore only need to
select which is the most (least) profitable. A plant’s profitability compared to others within
a technology primarily depends on its heat rate. I use heat rates as well as observed decisions
as a heuristic to identify the plant. See appendix B for more details, as well as an explicit
definition of the choice set for each firm.

For small firms with at most one plant, the choice set depends on which other small firms of
the same technology have already entered (or exited, in the case of a retirable technology).
I assume that only one small firm of a given technology may enter (exit) in a given year. I
additionally assume that each of the small firms within the same technology have the same
idiosyncratic adjustment cost shock. These assumptions mean, just as described in the within-
firm case above, that for each technology only the most profitable small firm (if the technology
is expandable) or the least profitable small firm (if retirable) will adjust. There are, therefore,
only as many small firms making decisions in a given year as there are technologies.

28I make the distinction that old open cycle natural gas plants are retirable, while new ones are expandable
because I observe both retirements and construction of this technology. See appendix B for more details.

29The main purpose of this assumption is for computational tractability. This limits the number of choices
that the firm can to make. This restriction in choices is unlikely to have a significant impact on the model’s
predictions, however. Being able to make adjustments to one plant for each technology may lengthen the
amount of time it takes for a firm to reach its optimal set of generators, but adjustments to generation
technologies occur over fairly long time horizons in practice. Moreover, it is never the case in the data that a
firm makes an adjustment to more than one plant of a given technology in a single year.
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4 Estimation and Identification

In the following section I lay out a strategy for estimating the parameters of the model
described in section 3. I estimate the model parameters in two stages. In a first stage I
estimate the parameters governing the wholesale market. I then use these first-stage estimates
to construct the expected yearly profit function (equation 14), which I use in a second stage
to estimate the parameters governing firms’ investment decisions, including the sunk costs of
investment and fixed maintenance costs. I specify as the large firms those that in the data
that own more than one power plant. This results in two firms; however, I additionally include
another firm, GRIFFINP, which only has one power plant but the plant is very large, yielding
a market share for this firm of greater than 10% in the sample. All other firms have market
shares less than 10%, own only one other power plant, and are classified as small firms that
can only operate at most their one power plant.30

4.1 Wholesale Market Estimation

In the first stage I estimate the joint distribution of wholesale market variables: generators’
production costs, capacity factors, and demand shocks, F δ,c,Ξ

t . Some of these variables are
observed directly in the data (capacity factors δ), some can be backed out from observed
data (electricity consumption valuations Ξ), and some need to be estimated to recover the
full distribution (production costs c).

Capacity Factors Capacity factors δ are observed in the data. For coal and natural gas
plants, plant outages are reported to the grid operator. For intermittent renewables, outages
are not sufficient for capturing the capacity factor since they depend on sun/wind availability.
I take the fraction of nameplate generator capacity that is produced in a given interval as the
capacity factor for solar and wind generators. By doing so, I am implicitly assuming that all
available wind and solar capacity clears the auction.31

Demand We can recover electricity consumption valuations Ξh given the demand for elec-
tricity and the elasticity of demand with respect to end-consumer prices. The demand for
electricity (Q̄h) is simply the sum of demand satisfied (Qh) and the load that is curtailed,
which is estimated and reported by the grid operator. The elasticity of demand for electricity
is a value of general interest, and there exists a large literature that has sought to estimate
this value (Jessoe & Rapson, 2014; Harding & Sexton, 2017; Deryugina et al., 2020; Fabra

30I also allow for additional small firms not observed in the data, see appendix B.
31Prior to 2011, there are no solar generators, meaning there are no realizations of solar capacity factors

from which to sample in those years. In 2011 GREENOUGH_RIVER_PV1 entered with a small capacity (it
would eventually expand, see notes in table 9), so for years prior to 2011, I use solar capacity factor realizations
in 2011.
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et al., 2021). While the estimates from this literature provide a range of plausible values of
this elasticity, given the wide range of elasticities estimated in different markets, I choose to
estimate the elasticity for the Western Australian market.

Equation 9 provides a possible method of estimating the elasticity ϵ. Taking logs of both sides
yields

log
(

Q̄h︸ ︷︷ ︸
=Qh+Qload curtailed

)
= −ϵ log

(
Pt(h)

)
+ log (Ξh) ,

which would be easily estimable using OLS if Ξh and Pt were independent. End-consumer
prices reflect demand, however, meaning that estimating ϵ in this way would lead to a biased
result. Rather than estimating ϵ off the full sample of intervals, therefore, I utilize that retail
prices change at particular intervals. Specifically, prices change on July 1 of each year. I
use the period surrounding this change (one month before and one month after). To take
into account that there are long-term trends in Ξh (e.g., population growth, rooftop solar
adoption), I use year fixed effects. Furthermore, to control for the fact that demand may
be different in June than in July (e.g., due to temperature differences), I use month fixed
effects. The identifying assumption is that, after controlling for average (log) demand in June
and July of that year and average (log) demand for the months of June and July, (log) retail
prices are independent of demand shocks. This assumption is reasonable since retail prices
only depend on demand realizations over the long run, not hourly or daily fluctuations. Under
this assumption, we can attribute changes in demand (after controlling for year and month
average demand) to changes in the retail price consumers face. For retail prices, I use the
variable component of residential electricity tariffs. Table 2 provides the estimation results as
well as more details.

Using this estimate for the elasticity, ϵ̂, we can recover Ξh in each interval using:

Ξ̂h = Q̄hP ϵ̂
t .

While Pt is observed in the data, in order to determine Pt when there are different sets of
generators in the market, I also need a value of cretail. I calibrate cretail by choosing the value
that makes the sequence

{
Pt(h)

}
h

predicted by equation 10 on average equal to the residential
tariffs observed in the data.

Generator Production Costs While some components of the cost function (equation 1)
are observed, such as generator heat rates and the input prices, the cost shocks are not. While
wholesale market bidding data may present a possible method of recovering these cost shocks,
this is complicated by the fact that in Western Australia some firms bid not at the generator
level but rather the firm level, making it difficult to associate shocks to particular generators
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or technologies.

Rather than using the bidding data, I use production and price data to form moments about
the wholesale market and use simulated method of moments to estimate the distribution
of cost shocks. I assume that this distribution follows a skew multivariate normal distribu-
tion, which generalizes the multivariate normal distribution to allow for skewness. Allowing
for skewness is useful because cost shocks, which capture transportation costs, transmission
constraints, ramping, and forward contracts, may not be symmetric.32 Moreover, using a
multivariate distribution that allows for correlation in the cost shocks is important because
many of these circumstances the cost shocks are meant to capture are likely to be similar
across generators within an interval. Specifically, I assume εh ∼ SN (ξ, Σ, α), where ξ cap-
tures the location, Σ the covariance, and α the shape. These parameters vary only at the
technology-level (e.g., ξg = ξs(g)), and the covariance Σ is given by

Σ =


σ2

1 ρ1,2σ1σ2 . . . ρ1,Gσ1σG

ρ2,1σ2σ1 σ2
2

... . . .
ρG,1σGσ1 σ2

G

 .

The value ρg,g′ captures the correlation between the cost shocks of generators g and g′ and
also varies only at the technology level (i.e., ρg,g′ = ρs(g),s(g′)). While the parameters of the
cost shock distribution only vary at the technology-level, note that there is still heterogeneity
in average costs across generators within the same technologies due to differences in heat
rates, which is the primary reason we would expect cost differences to arise.

The moments that I use to estimate the cost shock distribution correspond to the distribution
of market clearing wholesale prices, the fraction of production from each technology, the
covariance among these technology production fractions, and the covariance between these
fractions and the prices. Intuitively, the fraction of production coming from each technology
helps to identify relative differences in average production costs: high average cost technologies
should have smaller average production shares, all else equal. The variance in the fraction
produced by each technology helps to identify the variance in the cost shocks: technologies
with a high variance in cost shocks, all else equal, will have a higher variance in production
shares. Covariances help to identify the degree of correlation in the cost shocks. Finally, the
price distribution helps to identify the level of cost shocks as well as their skewness.

32For example, if a firm does not produce in an interval, despite a high wholesale price due to a transmission
constraint, this may need to be rationalized by the possibility of a large cost shock. Since generators have more
flexibility not to produce, the cost shock distribution may not need to allow for similarly low cost shocks, as a
symmetric distribution would impose.
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I obtain moments as a function of the distribution parameters by taking draws of the cost
shocks (as well as draws from the joint empirical distribution of demand Q̄h, capacity factors δ,
and input prices pinput) and simulating the resulting wholesale market equilibria, characterized
by equations 2 and 5. The costs for intermittent renewables are assumed to be zero (i.e.,
cgh = 0 for solar and wind). Table 3 provides estimates as well as a comparison for selected
moments used in the estimation procedure between those in the data and those simulated
under the parameter estimates.

4.2 Investment Decision Estimation

With the cost and demand distributions estimated as described in section 4.1, the remaining
parameters of the model are those that enter the long-run stage of the model. These include
maintenance costs {ms}s, the variable cost of investment {Cst}s,t, the distribution of the
idiosyncratic shocks η, and the discount factor β. As is common in the discrete choice
literature, I assume that the idiosyncratic shocks are i.i.d. Type I Extreme Value, yielding
closed form choice probabilities. Estimating the distribution of the idiosyncratic shocks thus
reduces to estimating the variance of these shocks. I additionally set β = 0.95, which is
common in the dynamic discrete choice literature given the difficulty in estimating discount
factors (Magnac & Thesmar, 2002).

I use a full-information maximum likelihood approach to estimate these parameters in the
style of Rust (1987). This is the same approach taken by Igami & Uetake (2020), which uses
similar timing and horizon assumptions in modeling the dynamic game. The full-information
approach, in which I compute the equilibrium of the model for every guess of the parameters,
is feasible because the equilibrium is unique and relatively straightforward to compute using
backward induction. Moreover, this method allows me to incorporate nonstationary invest-
ment costs and provides precise estimates because it uses the full structure of the model.
The latter point is important because I have limited data corresponding to investment (17
years, 7 decisions per year, and a single market, for a total sample size of 119), making the
precision of the estimates a primary concern. The approaches common in the dynamic games
estimation literature (e.g., Bajari et al. (2007); Pakes et al. (2007); Aguirregabiria & Mira
(2007); Pesendorfer & Schmidt-Dengler (2008)), which are two-step procedures, would there-
fore be infeasible in this setting, as they would require precise first stage estimates of choice
probabilities in every year (due to the nonstationarity of the setting).

Since investment costs are nonstationary (due primarily to rapidly declining renewable costs)
and I observe only one market, it is infeasible to estimate these time-varying costs. Instead,
I use engineering estimates to construct the path of new generator costs in each year for each
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energy source.33 While there exists a general concern that accounting or engineering costs
may neglect some components of costs important to firm decisions, that is unlikely to be a
major concern in this case. The cost of generator construction is likely to constitute the vast
majority of the cost of an adjustment.

I estimate the maintenance costs and the variance of the idiosyncratic shocks using firms’
investment and retirement decisions. Maintenance costs are identified by the level of capacity
that firms maintain conditional on profits and investment costs. For example, if a firm retires
a particular energy source (such as the coal retirements observed in the data), that implies it
is costly to maintain that source relative to the profits it receives for it.34 The variance of the
idiosyncratic shocks is identified (in part) by the covariance between investment decisions and
profitability. If investment and profitability are highly correlated, that suggests idiosyncratic
shocks play a minor role in investment decisions, and the variance is small. Conversely, if
they are weakly correlated, that suggests the shocks are large relative to the profitability of
an investment.

The likelihood function for a firm f in year t implied by the model conditional on an ordering
of firms in that year Ωt is given by

LΩt
f,t (θ) =

∏
G′∈Γf

Pr
(
G′ = Gf,t | Gf,t−1, GXf (Ωt)\{f},t, GF\Xf (Ωt),t−1, t, Ωt

)1{G′=Gf,t}
. (20)

Since the data do not fully reveal the ordering Ωt in which a decision is made (because in the
case on non-adjustment, it is unclear when a firm moved), the maximum likelihood estimator
therefore integrates over the ordering and is given by

θ̂ (G) = arg max
θ∈Θ


Tobs∑
t=1

∑
f∈F

log

∑
Ωt

Pr (Ωt) LΩt
f,t (θ)

 , (21)

where Tobs is the number of observed periods, which is 17 years in my sample. I set the last
year before lock-in (year T ) to be 30 years after the start of the sample in order to give firms
a long time period to adjust. I use the same value for T in my counterfactuals.

Note that Πt (G) depends only on parameters estimated in the previous stage. I can therefore
pre-compute this function for each G ∈ Γ and t ≤ T , which remains the same for each

33Specifically, I use engineering cost estimates from Western Australia (Australian Bureau of Resources and
Energy Economics, 2012), which provide a snapshot of costs in a particular year, and from the U.S. (U.S.
Energy Information Administration, 2010, 2013, 2016, 2020), which provide a time series of costs for each
energy source. Appendix A.3 provides a description of these data sources and the assumptions made to obtain
the full sequence of costs over time for Western Australia.

34I am assuming here that scrap values are equal to 0. Maintenance costs and scrap values are not separately
identified, so I make the assumption that scrap values are equal to 0 and estimate the maintenance costs.
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candidate θ. This fact is important for the estimator’s computational tractability since the size
of the state space is very large,35 and for each (G, t), I solve the wholesale market equilibrium
1 000 times to compute expected profits, nested in a fixed point due to the response of demand
to average wholesale prices (equation 12), upon which I iterate until convergence.

5 Results

Demand Elasticity Table 2 presents estimates of the demand elasticity. The three speci-
fications correspond to whether year and month fixed effects are used to to control for across
year and across month differences in demand. The preferred specification (and the one used in
later stages) is the final one, which implies an elasticity of -0.094. While the demand elasticity
is imprecisely estimated, this value is very similar to the value of -0.09 found in Deryugina
et al. (2020) over a six-month horizon of adjustment using data for Illinois.

Table 2: Demand Elasticity Estimates

(1) (2) (3)

Estimates
ϵ̂ -0.064 0.241 0.094

(0.024) (0.097) (0.101)

Controls
constant ✓ ✓ ✓
year effects ✓ ✓
month effects ✓

Num. obs. 12 240
Note: Reported standard errors are heteroskedasticity-robust standard errors. The sample period is

constructed by using years after 2014, within 30 days of July 1, but not within 15 days. The buffer of 15 days
surrounding July 1 is chosen to give consumers some time to respond to the new prices they face. The choice
of using years after 2014 is to avoid Australia’s carbon tax (repealed in 2014). The carbon tax is a potential

confounder because it impacts prices Pt as well as electricity consumption valuations Ξh (e.g., switching
heating to electricity to reduce carbon tax burden). This would be a violation of the identifying assumption,

and thus the years before 2014 are dropped from the sample.

Production Cost Shocks Table 3 presents estimates of the distribution of production cost
shocks as well as a comparison of selected moments from the data and in the simulated equi-
libria under the parameter estimates. For all three technologies, the estimated parameters
imply cost shocks have a positive mean, nontrivial variance, and are positively skewed.36 Cost

35The size of the possible combinations of generators is 810 000, and the number of years is 30, for a total
size of the state space of 24 300 000.

36Note that ξs, σs, and αs are the location, scale, and shape parameters of the multivariate skew normal
distribution but are not direct measures of the distribution’s mean, variance, and skewness.
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shocks are positively correlated among one another, and the correlation within a technology
is greater than across technologies. Moments from the simulations under the estimated pa-
rameters suggest the model is broadly able to capture the distribution in wholesale market
prices and the fraction produced by different technologies.

Table 3: Production Cost Shock Estimates

Coal OCGT CCGT

Estimates
ξ̂s 8.553 10.114 3.382

(0.290) (0.352) (1.334)
σ̂s 23.017 25.364 42.482

(0.209) (0.248) (1.158)
α̂s -0.200 6.679 2.582

(0.427) (0.892) (0.472)
ρ̂s,Coal 0.333 0.333 0.025

(0.016) (0.011) (0.015)
ρ̂s,OCGT 0.333 0.333 0.148

(0.011) (0.010) (0.017)
ρ̂s,CCGT 0.025 0.148 0.167

(0.015) (0.017) (0.018)

Selected Moments Data Simulation

fraction intervals
Ph ≤ 25 AUD 5.9% 4.2%
Ph ≤ 38 AUD 29.6% 20.8%
Ph ≤ 50 AUD 64.4% 49.7%
Ph ≤ 62 AUD 77.2% 76.3%
Ph ≤ 75 AUD 85.3% 91.9%

fraction produced by
Coal 54.5% 56.1%
OCGT 14.0% 14.1%
CCGT 16.6% 14.8%

Num. obs. 174 708
Num. simulation draws 50 000

Note: The weighting matrix used in obtaining these estimates is the inverse of the sample covariance matrix
of the moments, which is an efficient weighting matrix. Selected moments are not an exhaustive list of those
used for estimation. Section 4.1 describes all of the moments used. For moments calculated in the data, only
intervals with nonnegative wholesale prices and after the beginning of the real-time market on July 1, 2012
are used. Draws from the multivariate skew normal distribution are obtained using the procedure proposed
by Azzalini & Capitanio (1999). Rather than searching over the correlation parameters (ρs,s′ ) directly (for

which it can be difficult to maintain positive definiteness for the covariance matrix), I search over the inverse
tangent transform of the Cholesky factor of the correlation matrix, which ensures that the correlation matrix

implied by the parameters is a proper correlation matrix. Standard errors for these parameters are
approximated using the Delta Method.

With estimates of the demand elasticity, production cost shocks, as well as the empirical
distribution of consumption valuations, capacity factors, and input prices, I can simulate
equilibrium profits in each year for each combination of generators G. This estimate of yearly
expected profits Π̂t (G) can then be used in the second stage of estimation.
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Investment Decision Table 4 presents parameter estimates for the investment stage of the
model. Maintenance costs are positive for all energy sources, suggesting it is costly to hold idle
capacity, and they are larger (in per MW terms) for fossil fuel generators than renewables.
Standard errors are larger for renewable generators, however, driven in part because there
are fewer observations in which a firm adjusts its set of renewable generators. Idiosyncratic
investment cost shocks appear to be nontrivial in size. The scale parameter is equivalent in
size to between approximately one-third and one-half of the profits the largest firm received
in the sample period (based on the first-stage production cost estimates). This provides firms
with an incentive to wait for and choose portfolios with good investment cost shocks.

Table 4: Investment Model Parameter Estimates

Coal OCGT CCGT Solar Wind

Estimates
maintenace costs

m̂s (A$/kW) 143.5 151.6 70.0 29.4
(31.5) (8.5) (58.1) (20.1)

average investment costs
Ĉs 2007 (A$/kW) 3 766.7 886.8 1 420.9 5 399.1 3 304.5
Ĉs 2011 (A$/kW) 3 357.7 783.8 1 230.1 4 478.1 2 831.6
Ĉs 2015 (A$/kW) 3 401.8 786.1 1 135.1 2 760.8 2 199.4
Ĉs 2019 (A$/kW) 3 340.0 817.3 1 203.1 1 138.9 1 736.5

idiosyncratic shock distribution
σ̂η (million A$) 119.4

(7.575)

Num. obs. 119
Note: Maintenance costs for OCGT and CCGT are imposed to be the same and are hence grouped in the
table. Investment costs are reported for a subset of years and lack standard errors because they are not

estimated and come from engineering estimates (see Appendix A.3). To make the likelihood convex, rather
than searching for the scale of the idiosyncratic shock ση directly, I make the standard normalization to the

scale (such that ση = 1 and the variance is equal to π2/6) and allow profits and investment costs to be scaled
by a parameter in the search. In the results presented in this table, I scale the results back so that they are in

terms of dollars (the form presented in equation 17). Standard errors are approximated using the Delta
Method. These standard errors do not reflect the uncertainty in the estimates in the first stage.

6 Counterfactuals

In this section, I consider the impact that counterfactual policies have in equilibrium on
investment, production, greenhouse gas emissions, and blackouts. The estimates of firms’
costs, capacity factors, and electricity demand provided in section 5 allow me to predict the
path of investment and production that firms undertake in equilibrium under counterfactual
policies. I study carbon taxes and capacity payments, which aim to address the environmental
externality and blackouts, respectively, as well as alternative environmental policies that are
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widely used in practice.

6.1 Electricity Market Policies

In this section I consider policies that are intended to address a specific market failure, both
in isolation and as a policy bundle. In particular, I consider two policy tools, carbon taxes and
capacity payments. Carbon taxes address the environmental externality by making electricity
production using carbon-intensive technologies more costly, and, in the absence of other mar-
ket failures (such as market power, price caps, or lack of real-time pricing), they can achieve
the social optimum. Capacity payments address blackouts by subsidizing capacity, increas-
ing the returns to investment. Since price caps limit the returns to investment, potentially
increasing blackouts, I also explore the welfare impact of these policies under a higher price
cap. Each of the policies are static, in the sense that they do not vary over time, and this
is known by the firms at all points in time. In Section 6.3 I consider time-varying policies.
I simulate the market forward from the same state starting in year 2006 as that observed in
the data and obtain the distribution of firms’ investment decisions.

6.1.1 Policies in Isolation

First, I consider each of the policy tools in isolation. For each policy tool that I consider, I
set the other tool to a value of 0. Price caps are set to A$300/MWh, approximately the same
as the average price cap historically in Western Australia. I predict the impact of a carbon
tax in the absence of capacity payments, and I consider capacity payments in the absence of
a carbon tax. The goal of this exercise is to isolate the impact of each tool separately. In
section 6.1.3 I consider complimentarities between the policies.

Carbon Tax I consider a carbon tax levied on firms based on the emissions rate of each
generator, given by table 9 in Appendix A. The value of the carbon tax, τ , enters the cost
of each firm as described in equation 1. Figure 3 presents the evolution over time of the
expectation of aggregate capacities by energy source and share of production for that energy
source for four different values of the carbon tax.

The top of figure 3 captures substitution along the extensive (investment) margin. A car-
bon tax results in a decline in coal generators due to coal being the most carbon-intensive
technology and having a high estimated maintenance cost, making it costly to hold idle coal
capacity. A carbon tax of A$200/ton results in nearly complete retirement of coal capacity
by 2015 despite coal making up a majority of production at the start of the sample less than
10 years earlier. Gas generators, which are roughly half as carbon-intensive as coal, do not
exhibit the same pattern. Gas investment has a non-monotonic pattern, with carbon taxes
of A$100/ton or A$200/ton resulting in an increase in investment relative to no carbon tax,
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while at A$300/ton, there is marginally lower investment by 2030. This relationship reflects
gas being an energy source that is less carbon intensive than coal and not intermittent, re-
sulting in gas replacing coal; however, at high carbon taxes, there is less investment in this
technology. Wind and solar, which emit zero CO2, experience a substantial increase in ca-
pacity as the carbon tax rises; firms adopt more renewable generators, and they adopt them
earlier. Most of this investment is in wind, however, reflecting higher estimated solar main-
tenance costs and low net demand in the middle of the day (due to rooftop solar) when solar
is available.

The bottom row of the figure captures substitution along the intensive (production) margin,
which reflects the investment decisions described above as well as the relative production costs
of each energy source. In early years, when there exists significant coal capacity and little
renewable capacity due to high investment costs, as the carbon tax increases, so too does the
share produced by gas, while the share produced by coal declines. Since there does not yet
exist significant renewable capacity, electricity demand must be satisfied by either coal or gas.
Since gas is the less carbon-intensive technology of the two, as the carbon tax rises, a higher
fraction of gas capacity is used, while the reverse is true for coal. Over time, firms invest in
renewable generators; however, even at the highest carbon tax, they make up less than half
of total production. In intervals in which there is little sun or wind, natural gas is used to
meet demand.

Capacity Payments I next consider the impact of capacity payments by varying the value
of the payment, κ, which enters the payment function Υft (·), defined in equation 15. Unlike
in the sample, in which the value varied over time, I simulate investment and production with
a value of κ that is constant for all years. The simulated expected evolution of investment
and production is given in figure 4 for four different values of the payments.

The results suggest that the high levels of payments observed in the data (on average around
A$125 000/MW during the sample period, which would be between the third and fourth
lines in figure 4) are what have kept coal capacity at a relatively slow decline in Western
Australia. Gas capacity is also very responsive to the size of the capacity payments. Without
capacity payments, expected gas capacity experiences a small decline comparing 2030 and
2006; however, with the payments, gas is roughly the same in those two years (with a small
dip in the intermediate period as less efficient gas plants are retired and more efficient ones
built). An active policy question regarding capacity payments is their impact on renewables.
The results suggest that capacity payments have a negative impact on renewable capacity,
most pronounced for wind since solar capacity without a carbon tax is negligible. Increasing
the size of capacity payments decreases the incentive to invest in wind because the payments
promote fossil fuel investment, increasing the number of these generators, which lowers the
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Figure 3: Impact of Carbon Tax on Investment and Production
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Note: Depicted in each panel is the expectation for a particular energy source summed across all strategic
firms and the competitive fringe for a particular value of a carbon tax. The top row predicts levels of

capacity in each year (x-axis) for each energy source (columns), and the bottom row presents the same but
for shares of production. Note that production shares are less smooth than investment because of variation in

coal and gas prices as well as the distribution of demand from year-to-year.

Figure 4: Impact of Capacity Payments on Investment and Production
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average wholesale price of electricity.

Lacking a carbon tax or any policy affecting the production margin, production follows a
similar pattern to that of capacity. As the payment size increases, the share of electricity
produced by coal rises with the associated capacity. Gas experiences a more nuanced pattern.
While there is substantial investment in gas capacity because the investment costs of these
generators are relatively cheap, gas is not as competitive as coal in the wholesale markets, so
the share produced by gas actually goes down in most years as we increase the size of the
payments since coal capacity is increasing.

6.1.2 Higher Price Caps

Price caps limit the maximum attainable market-clearing wholesale spot price. These can
contribute to blackouts via two mechanisms. First, a low price cap can cause some generators
to not participate in the wholesale market because their production costs exceed the cap
(especially if the carbon tax is sufficiently high). Second, by limiting the maximum price,
caps dampen the returns to investment, generating less investment in generation capacity.

In this subsection, I explore the impact of price caps on investment by simulating a higher
price cap of A$1 000/MWh (rather than A$300/MWh). In the following subsection (6.1.3) I
explore their impact on welfare. Figure 5 depicts investment in the four energy sources over
time by price cap and by carbon tax. The relationship between these two variables is nuanced.

Without a carbon tax, the price cap rarely binds, so a high price cap results in only marginally
more investment in natural gas and less in wind.37 A high carbon tax, however, raises pro-
duction costs, leading to the low price cap binding more frequently. The price cap therefore
has a larger impact in this case. Conditional on generator portfolios, prices are higher on
average with a higher price cap, raising the returns to investment. Renewable investment is
nearly completely unaffected by the price cap; however, fossil fuel generators—especially nat-
ural gas—receive substantially more investment with a higher price cap. Price caps typically
bind in the states of the world with low wind or sun availability, so the marginal return to
renewable investment does not increase by very much when the price cap rises.

37Note that while the low price cap is rarely binding for most states of the world, for states of the world with
low investment levels, the price cap matters because it is the wholesale price when blackouts result. Given
investment cost shocks (captured by η in equation 17) with full support along the real line, there is some
probability of ending up in these states, and this probability is reflected in the expectation, which is why the
impact of the price cap, while not large, is also not trivial even without a carbon tax that substantially raises
production costs.
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Figure 5: Impact of Carbon Taxes and Price Caps on Investment
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Note: Depicted in each panel is the expectation for a particular energy source summed across all strategic
firms and the competitive fringe for a particular value of a carbon tax (given by how dark the line is) and

price cap (given by whether the line is solid or dashed).

6.1.3 Welfare Impact

In this section, I consider the impact of the policies introduced in the previous section on
welfare. I use a welfare function that includes a carbon externality, which is the sum of carbon
emitted to produce electricity times the social cost of carbon. It also includes a blackout cost,
which is the expected Megawatt-hours of electricity experiencing a blackout due to demand
exceeding available supply times consumers’ willingness to pay to avoid a Megawatt-hour of
blackouts, which is referred to in the electricity literature as the value of lost load.38,39

I consider changes in this welfare function as I change policies, such as a carbon tax or capacity
38I assume that blackouts are rolling and the grid operator can perfectly ration a fraction of consumers to

equate demand with the maximum available supply. For example, if consumers demand 1 000 MWh in a given
interval, but the available supply is only 900 MWh, then 100 MWh are randomly rationed. The consumers
who are rationed receive zero electricity.

39In theory, the blackout cost is a part of consumer surplus, but the utility specification I use is meant
to capture changes in prices and is not well-suited for considering the cost to consumers of zero electricity
provided. In fact, using the utility specification in equation 8, the marginal utility at zero electricity for a
consumer is infinite. Instead, I opt to separate the consumer surplus that reflects prices and quantity of
satisfied demand and the cost of blackouts from unsatisfied demand separately. Consumer surplus, captured
by CSt (·) in equation 22, is measured only for consumers not experiencing a blackout. For those experiencing
a blackout, I use the cost of a blackout (the value of lost load) multiplied by the amount of unsatisfied demand.
This is equivalent to the specification in equation 8 with the marginal willingness to pay capped so that this
willingness does not exceed the value of lost load.
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payments. Formally, the change in total surplus going from policy P to policy P ′ is given by

∆P →P ′
Wt (Ω, η) = ∆P →P ′

CSt (Ω, η)
+∆P →P ′ ∑

f PSf,t (Ω, η)
+∆P →P ′

Gt (Ω, η)
−SCC × ∆P →P ′ carbon emissionst (Ω, η)
−V OLL × ∆P →P ′ MWh experiencing blackoutt (Ω, η) ,

(22)

where SCC and V OLL are the social cost of carbon and the value of lost load, respectively.
The change in total present discounted expected surplus over the entire time horizon is given
by

∆P →P ′W = EΩ,η

[ ∞∑
t=0

βt∆P →P ′
Wt (Ω, η)

]
. (23)

Table 5 provides consumer surplus, producer surplus, government revenues, emissions, and
blackouts for a range of values of both the carbon tax τ and the capacity payment size κ,
for both a low and a high price cap. I first consider the welfare impacts of carbon taxes and
capacity payments separately and then complementarities between the two policy tools.

Carbon Taxes A carbon tax decreases emissions as intended. As the carbon tax increases,
however, the marginal reduction in emissions declines. For low levels of a tax, the decrease
in emissions is similar for both a low and a high price cap; however, at higher levels, there
is relatively more investment in fossil fuels with high price caps, resulting in less of a decline
in emissions than with a low price cap. Blackouts, meanwhile, are increasing in the size of
the tax for low price caps. The tax causes coal capacity to decline, and gas capacity does not
change substantially to make up the difference. For high price caps, however, there is more
investment in gas (and not complete retirement of coal), so the level of blackouts is basically
invariant to the size of the tax.

A carbon tax increases the production costs of carbon-intensive technologies. As the tax
increases, this results in decreased consumer surplus since consumers face higher prices, and
this decrease in consumer surplus is larger with a high price cap. Interestingly, producer
surplus does not decrease but rather increases as the tax increases. This pattern is driven
by two factors. First, demand is highly inelastic, so most of the increased cost in producing
electricity is passed on to consumers (consistent with Fabra & Reguant (2014) in the case
of Spain and Nazifi et al. (2021) in the case of the eastern portion of Australia). Second,
the wholesale price is set by the marginal generator. Since a fossil fuel generator is typically
the marginal generator (even at high tax levels with substantial renewable investment), a
higher tax increases the market price. With lower emissions-intensity inframarginal generators
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Table 5: Welfare

∆CS (billions A$) ∆PS (billions A$) ∆G (billons A$) ∆ emissions (billions kg CO2-eq) ∆ blackouts (millions MWh)
τ κ low price cap high price cap low price cap high price cap low price cap high price cap low price cap high price cap low price cap high price cap

0 0 0.0 -24.67 0.0 29.13 0.0 0.0 0.0 1.65 0.0 -3.34
50 000 1.79 -23.2 1.0 30.74 -2.51 -2.55 7.71 6.56 -1.36 -3.49
100 000 3.85 -21.19 2.04 31.78 -5.35 -5.24 16.22 10.03 -2.72 -3.76
150 000 7.37 -18.95 2.17 32.68 -9.19 -8.12 30.32 13.78 -4.73 -4.06
200 000 13.22 -17.44 2.65 34.11 -18.05 -11.05 43.92 15.84 -6.7 -4.34

100 0 -18.79 -36.16 4.31 19.78 13.53 15.17 -60.47 -44.03 4.77 -4.59
50 000 -16.64 -35.84 3.42 22.67 11.49 13.04 -59.47 -40.91 0.95 -4.49
100 000 -13.69 -32.82 2.09 22.29 9.4 10.27 -52.83 -43.21 -3.31 -5.1
150 000 -10.49 -31.39 2.07 23.45 5.81 7.62 -48.89 -43.49 -6.38 -5.36
200 000 -5.86 -32.61 3.48 26.75 -3.69 4.93 -43.52 -41.24 -7.61 -5.09

200 0 -31.87 -52.45 5.91 22.0 21.41 24.57 -88.71 -72.88 7.98 -4.83
50 000 -31.46 -49.42 6.7 21.75 19.99 22.18 -85.82 -72.91 4.09 -5.42
100 000 -30.84 -46.81 7.78 22.12 18.14 19.58 -83.02 -73.11 0.6 -5.86
150 000 -28.67 -43.75 8.01 22.15 14.77 16.77 -80.53 -72.18 -4.22 -6.4
200 000 -23.79 -37.98 8.74 20.33 4.54 11.84 -81.27 -73.72 -7.46 -7.15

300 0 -39.87 -75.73 8.86 34.93 26.25 33.41 -108.24 -84.4 21.83 -3.11
50 000 -40.88 -70.64 10.24 30.52 25.36 31.57 -105.12 -82.91 17.21 -4.75
100 000 -42.34 -64.99 11.3 27.62 24.51 28.57 -99.29 -84.37 8.56 -5.85
150 000 -41.94 -66.0 11.05 31.71 20.64 26.32 -92.98 -83.3 -4.8 -5.48
200 000 -38.38 -58.18 13.21 28.86 8.13 21.25 -93.24 -84.8 -8.66 -6.83

Note: Changes are with respect to the laissez-faire policy (τ = 0, κ = 0) at the low price cap (P̄ = A$300). The high price cap is the same as that used in
section 6.1.2, A$1 000/MWh. All values are in expected present discounted terms, using the same discount factor as that used by the firms, β = 0.95, with

the expectation taken with respect to both the ordering of firms’ decisions and well as their investment cost shocks. Note that consumer surplus is the
surplus for consumers who do not experience a blackout, and the full consumer surplus (which includes the cost of blackouts) is captured by the final

column weighted by the value of lost load, as explained in footnote 39.
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(especially zero-emitting renewables, which are substantial at high tax rates), this increases
producer surplus.

Capacity Payments Capacity payments function as intended at reducing blackouts, driven
by increased investment in fairly reliable fossil fuel generators. With low price caps the
decrease is substantial, while with high price caps blackouts are only marginally sensitive to
the size of the payments. Because in equilibrium firms invest less in renewables as the size
of these payments increases, the share of electricity produced by fossil fuels is increasing and
the share of renewables is declining. This drives a significant increase in emissions.

Joint Policies Given that carbon taxes reduce emissions but increase blackouts, and ca-
pacity payments reduce blackouts while increasing emissions, it is worth considering comple-
mentarities between these two policy tools. By using both policy tools, can we reduce both
emissions and blackouts? And if so, at what cost to product market welfare and government
revenues? Table 5 provides the welfare impact for combinations of these two tools. The
pattern of blackouts increasing with the size of the carbon tax weakens significantly when
capacity payments are introduced in addition to the tax. Additionally, the pattern between
emissions and the size of the capacity payments weakens when a carbon tax is also introduced.
With a sufficiently high carbon tax, emissions can be reduced regardless of the capacity pay-
ment, and with a sufficiently high capacity payment size, blackouts can be reduced regardless
of the carbon tax.

Both blackouts and emissions can be substantially reduced due to the fact that these variables
are a function of different margins. Emissions are a function of the production margin (which
sources are used to produce electricity), and blackouts are a function of the investment margin
(how much effective capacity is there in the market). While these two margins are linked
(investment is a function of production, and vice versa), subsidizing reliable capacity reduces
blackouts, and a carbon tax incentivizes firms to reduce the fraction of capacity they use from
emissions-intensive sources. By using both a carbon tax and capacity payments, therefore, we
can incentivize firms to invest in reliable capacity but also incentivize them not to use that
emissions-intensive capacity unless necessary.

Table 5 also provides the impact a policy has on product market welfare and government
revenues. A carbon tax has a significant negative impact on consumer surplus, even if the tax
revenue raised (given in the column ∆G) is rebated back to consumers, which may explain the
political opposition to a carbon tax. Capacity payments, however, can marginally increase
product market welfare and government revenues even apart from their impact on blackouts
(for example, ∆CS + ∆PS + ∆G is higher under κ = A$150 000/MW than κ = A$0/MW).
Strategic firms have an incentive to underinvest to drive up wholesale market prices. Capacity
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Table 6: Welfare-Maximizing Policies for Particular SCC and V OLL

carbon tax alone, low P̄ carbon tax alone, high P̄ joint policies, low P̄ joint policies, high P̄
τ∗ ∆W τ∗ ∆W τ∗ κ∗ ∆W τ∗ κ∗ ∆W

152.3 8.94 207.8 7.6 215.0 168 400 15.71 230.9 181 200 16.98
Note: Changes in welfare are with respect to the laissez-faire policy (τ = 0, κ = 0) with a low price cap

(P̄ = A$300) and in expected present discounted terms (using β = 0.95) in thousand A$ per customer. I use
a SCC of 230/ton CO2-eq and a V OLL of 1 000/MWh. Since computing the equilibrium given a policy is
computationally intensive, I calculate equilibria for a relatively sparse grid (seven equally spaced points for

the carbon tax and five equally spaced points for the capacity payments, with the same end points as shown
in table 5) and construct a much finer grid to determine optimal policy values by interpolating using

bivariate cubic splines.

payments can (partially) mitigate this exercise of market power, much like how a production
subsidy generally mitigates the exercise of market power in production.

Characterizing optimal policy requires taking a stance on the values of both the social cost of
carbon and the value of lost load. Both of these values are subject to significant debate, and
there remains considerable uncertainty about them. The goal of this paper is not to take a
strong stance on either of these values; however, I use particular baseline values to illustrate
how optimal policy responds to using certain policy tools. For the social cost of carbon, I
use the value proposed by the U.S. Environmental Protection Agency, which is US$190/ton
CO2-eq (equal to approximately A$230/ton CO2-eq in 2015 A$). For the value of lost load,
I use a relatively small value of A$1 000/MWh, in line with some estimates of the value for
residential consumers (London Economics International LLC, 2013). This value is the same
as the price cap in the high price cap simulation. In the absence of market power or the
environmental externality, and constrained to no real-time pricing, setting the price cap to
the value of lost load would achieve the (constrained) first best (Bushnell et al., 2017). Using
these values, table 6 provides the optimal policy with a carbon tax alone and when the tax
is used jointly with capacity payments, as well as the change in welfare that these optimal
policies yield.

Using a carbon tax alone, the optimal tax is well below the social cost of carbon. The tax
causes an increase in blackouts and can also exacerbate the exercise of market power. The
optimal tax is higher under a high price cap than a low one but generates a smaller increase
in welfare. With optimally-set capacity payments, however, the tax is closer to the social cost
of carbon, reflecting the role of capacity payments in preventing the increase in blackouts that
results from a carbon tax. This pattern holds regardless of whether a low or a high price cap
is used. In this case, a high price cap generates a larger increase in welfare, and the tax is
nearly equivalent to the social cost of carbon under the high price cap.
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6.2 Carbon Taxes vs. Renewable Investment Subsidies

Many electricity markets that have adopted environmental policies to reduce emissions have
used policies other than a carbon tax. In this section, I consider the impact on investment,
production, and welfare-relevant variables of renewable subsidies, which are alternative envi-
ronmental policies that have been widely used in practice. The first type of renewable subsidy
I consider is a renewable production subsidy, which pays renewable generators a fixed amount
for each MWh they produce. I will denote the value of this subsidy (in A$/MWh) by ς. This
subsidy changes a generator’s production cost (equation 1) to cgh + ς1 {s (g) ∈ Srenewable}.
The second type is a renewable investment subsidy, which reduces the cost of investment
of renewable generators. I will denote the value of this subsidy by s. Under this subsidy,
generators pay a cost to build a new generator of (1 − s1 {s (g) ∈ Srenewable}) Cs(g),t per MW.
A renewable generator therefore only pays (1 − s)×100% of the cost of a new generator (plus
the idiosyncratic cost and the yearly maintenance costs). Figures 9 and 10 in Appendix C
display analogous results to those in figures 3 and 4.

Table 7 compares the welfare impact of these three policy tools in isolation without any capac-
ity payments and a low price cap. For each level of emissions reduction, this table provides the
policy value that attains that reduction and the changes in blackouts, consumer surplus, pro-
ducer surplus, and government revenues that result. Renewable investment subsidies, widely
used in practice, are not very effective at reducing emissions, as demonstrated by the fact that
no subsidy s ≤ 100% can yield a substantial emissions reduction. A renewable investment
subsidy yields a low reduction in emissions because it does not incentivize emissions reduction
during production, and it also results in less investment in renewable capacity (see figure 9 in
Appendix C), reflecting that high estimated renewable maintenance costs cause firms to not
invest even if their sunk investments are largely subsidized.

A renewable production subsidy, meanwhile, can obtain larger emissions reductions than an
investment subsidy. This subsidy better incentivizes emissions-reducing production decisions
in the wholesale market; however, it is unable to distinguish between the emissions intensities
of the fossil fuel generators, which are significant (and therefore the maximum emissions
reduction it can attain is lower than that of a carbon tax). Despite this inability to finely
distinguish between emissions intensities, for a given emissions reduction, this subsidy actually
achieves the reduction at a lower cost to product market welfare and government revenues.
This result is perhaps surprising since, in addition to only coarsely distinguishing emissions
intensities, it lowers production costs, which expands demand rather than contracts it.40

Market power misaligns firms’ investment incentives, and the subsidy partially mitigates this.
40This is the standard reason why, in the case of two production technologies, a “green” subsidy cannot

achieve the first best while a “dirty” tax can.
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Table 7: Comparing Environmental Policies

∆emissions ∆blackouts ∆CS ∆PS ∆G ∆ (CS + PS + G)
(billions kgCO2-eq) policy policy value (millions MWh) (billions A$) (billions A$) (billions AUD) (billions A$)

0 carbon tax 0.0 0.0 0.0 0.0 0.0 0.0
renew. prod. subs. 0.0 0.0 0.0 0.0 0.0 0.0
renew. inv. subs. 0.0 0.0 0.0 0.0 0.0 0.0

5 carbon tax 10.7 -0.5 -1.6 -1.1 2.4 -0.3
renew. prod. subs. 2.3 -0.1 0.2 -0.1 -0.1 -0.0
renew. inv. subs. 23.5 -0.1 0.4 0.5 -0.5 0.4

10 carbon tax 19.6 -0.8 -3.0 -1.7 4.2 -0.5
renew. prod. subs. 10.9 -0.3 0.8 -0.2 -0.7 -0.1
renew. inv. subs. 48.3 -0.1 0.7 1.5 -1.2 0.9

15 carbon tax 27.1 -0.9 -4.2 -2.0 5.5 -0.7
renew. prod. subs. 23.6 -0.5 1.6 0.0 -1.7 -0.1
renew. inv. subs. 77.7 -0.2 1.0 3.0 -2.4 1.6

20 carbon tax 33.2 -1.0 -5.3 -2.2 6.5 -0.9
renew. prod. subs. 38.6 -0.6 2.1 0.7 -3.1 -0.2
renew. inv. subs. - - - - - -

25 carbon tax 38.5 -1.0 -6.2 -2.2 7.3 -1.0
renew. prod. subs. 53.9 -0.6 2.6 1.7 -4.7 -0.4
renew. inv. subs. - - - - - -

30 carbon tax 43.0 -1.0 -7.0 -2.1 8.0 -1.1
renew. prod. subs. 79.0 -0.7 3.0 3.6 -7.4 -0.8
renew. inv. subs. - - - - - -

35 carbon tax 47.2 -1.0 -7.8 -2.0 8.6 -1.2
renew. prod. subs. - - - - - -
renew. inv. subs. - - - - - -

Note: Changes in emissions, blackouts, and welfare variables are all in presented expected discounted values, which are the relevant values for evaluating
the welfare function given in equation 23. Since simulated values are along a discrete grid, to back out the policy value that yields a given change in

emissions, I interpolate values using cubic splines. I then use the interpolation to determine the policy value yielding the given change in emissions. For
blackouts and welfare variables, I also use cubic spline interpolation, taking the implied policy value and determining the corresponding interpolated

blackout or welfare variable value. For some of the higher levels of emissions reductions, there does not exist a renewable investment subsidy that would
yield that level of an emissions reduction. In this case, the values in the corresponding columns are replaced with “-”. Carbon tax values are in A$/ton

CO2-eq, renewable production subsidy values are in A$/MWh, and renewable investment subsidy values are in percentage points.
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6.3 Policy Timing

Policies that induce large investments are often delayed to allow firms time to adjust to the
policy. In this section, I explore the returns to delaying the implementation of a carbon
tax in order to allow firms to first adjust their generator portfolios. This highlights one of
the advantages of my framework using a non-stationary, randomly-ordered sequential moves
dynamic game with lock in: it allows for non-stationary policy environments in addition to
non-stationary costs and demand. Delaying a policy results in cost savings since firms have
time to react and invest in low emissions generators, but the delay also reduces the mechanism
that reduces emissions. I predict investment and production with the carbon tax announced
in 2006 but not actually implemented until Tdelay years later.41 This delay in the policy’s
implementation is known to the firms when the policy is announced in 2006.

Figure 6: Impact of Delaying Policy
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Figure 6 displays the change in consumer surplus and quantity-weighted average wholesale
prices in each year relative to those without a carbon tax for three different values of Tdelay.42

In the year that the carbon tax becomes implemented, consumer surplus drops since the
tax raises the price of electricity (depicted in the second panel). As the policy is delayed,
however, the drop in consumer surplus decreases. This decrease is a result of firm investment.
If the carbon tax becomes implemented without a delay, firms have almost no emissions-free
renewable capacity and instead use a high fraction of gas capacity (since it is less emissions-

41This exercise shares some similarities with the demand-side exercise in Langer & Lemoine (2022), exploring
optimal consumer subsidy dynamics to spur residential solar adoption.

42Rather than use the estimated profit function for each year, Π̂t (·), in this exercise I use the profit function
for a particular year (2015) in each year, i.e. Π̂2015 (·). This is because each year’s profit function depends on
the distribution of demand shocks and input prices for that year, which makes changes in prices and consumer
surplus relative to no carbon tax (depicted in figure 6) that result from delaying a carbon tax difficult to
separate from changes due to different distributions of demand shocks and input prices in each year.
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intense) and some coal (which is expensive because of its emissions). When the tax is delayed,
firms can respond in the years leading up to the implementation by investing in renewables
and some in less emissions-intensive natural gas. Ultimately, this results in less of a spike in
prices, and therefore a smaller reduction in consumer surplus.

Figure 7: Impact of Delaying Policy on Investment
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Note: Displayed is the expected investment for each source, summed across firms, for a tax of A$150/ton
CO2-eq and a capacity payment of A$100 000/MW. The capacity payment is implemented immediately, but

the carbon tax’s implementation is delayed based on the line.

While the delay in the implementation of the carbon tax can increase product market welfare,
it also results in time during which firms do not have as strong of an incentive to reduce
emissions. This lack of emissions-reducing incentives is especially true at the production
margin (e.g., there is no incentive to favor gas over coal), but also at the investment margin.
While it could be possible that, since the firms anticipate the tax, investment in renewables
is similar regardless of the delay, figure 7 shows that without a near immediate tax, firms
choose to delay investment in renewables (particularly wind since there is virtually no solar
investment early on). Firms have a strong incentive to delay investment, even though that
means they may not receive good adjustment cost shocks before the tax’s implementation,
because the cost of building new renewable generators is declining so much over time.

Given that delaying the policy can increase product market welfare but does not result in
the same level of an emissions decline during the delayed years, the impact on total welfare
of delaying the policy is ambiguous. Table 8 provides the impact of delaying the policy for
different values of the tax on the welfare-relevant variables. Since firms significantly delay
changing their generator portfolios when a carbon tax is delayed, the impact of delaying a
tax on emissions is substantial. The impact on consumer surplus and government revenues is
also large, while producer surplus is relatively unaffected by delaying. One might think that
delaying the tax’s implementation could alleviate blackouts that occur in the transition to a
long-run set of generator portfolios; however, blackouts are nearly unaffected by the delay,
driven primarily by the fact that delaying implementation results in more coal and less natural
gas capacity, even in the long run (which contributes to higher emissions levels).
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Table 8: Welfare Impact of Delaying Policy

∆CS ∆PS ∆G ∆ emissions ∆ blackouts
τ delay (billions A$) (billions A$) (billons A$) (billions kg CO2-eq) (millions MWh)

100 1 -16.95 -3.78 16.67 -56.05 -2.05
5 -13.11 -3.52 12.9 -45.03 -1.98
9 -10.53 -2.95 10.17 -34.79 -1.9

200 1 -35.46 2.56 25.77 -95.38 3.11
5 -29.03 3.17 20.13 -79.99 3.48
9 -24.26 3.49 16.03 -65.08 3.1

300 1 -45.63 3.57 31.84 -114.34 6.82
5 -35.18 3.48 24.78 -95.47 10.5
9 -29.13 3.73 19.81 -78.02 9.75

Note: Changes are with respect to a policy environment with no carbon tax (i.e., τ = 0) in all years.
Capacity payments are set equal to A$100 000/MW and the price cap to A$300/MWh. All values are in

expected present discounted terms, using the same discount factor as that used by the firms, β = 0.95, with
the expectation taken with respect to both the ordering of firms’ decisions and well as their investment cost

shocks. Note that values are not necessarily the same as those that would be implied by table 5 because
rather than using the estimated profit functions for each year (Π̂t (·)), I use the same profit function in each

year (Π̂ (·)) in this exercise, for the reason described in footnote 42.

Ultimately, despite the cost savings delaying a carbon tax can generate, there is little evidence
it is worthwhile to delay implementation, regardless of the precise value of the social cost of
carbon. With a higher social cost of carbon, emissions are more costly. With a higher tax, the
cost savings of delaying implementation are higher; however, so too is the cost of increased
emissions. If a policy maker can simultaneously choose a carbon tax and a number of years
to delay, I find that for any social cost of carbon greater than A$30/ton CO2-eq, the optimal
delay is zero years.43

7 Conclusion

Declining costs of renewables and the urgent need to reduce emissions have created a need
to understand the impact electricity market regulations have on production and investment.
This paper provides a framework that links the two in the setting of restructured electricity
markets. This framework allows for the relevant margins of adjustment—production and
investment—in all relevant energy sources, which is a necessary component for understanding
the impact on emissions and reliability that play a key role in this paper.

Using this framework, I show that without both environmental and reliability policy tools,
there are tradeoffs between emissions and blackouts. Using both tools, we can simultaneously
reduce emissions and blackouts, highlighting the need for joint regulation as the world adopts

43For very small values of the social cost of carbon, the optimal tax is small, and it is possible to increase
welfare a little by delaying its implementation. However, most estimates of the social cost of carbon are well
above A$30/ton CO2-eq.
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strict environmental policies to address the threat of climate change. Changes in technology
not studied in this paper—such as utility-scale batteries, which are in their infancy but starting
to be adopted, or real-time pricing, which introduce elasticity to demand—may also help to
address reliability concerns. However, batteries are still extremely expensive and also have
capacities that limit their ability to fill long-term gaps in available capacity, while real-time
pricing experiments have highlighted the issue of inattention to fluctuations in prices. This
means that reliability concerns and the policy tools studied in this paper are likely to be
relevant well into the future.
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A Additional Industry Details (for Online Publication)

A.1 South West Interconnected System

Figure 8: Map of South West Interconnected System

Source:
https://www.infrastructureaustralia.gov.au/map/south-west-interconnected-system-transformation

A.2 Generators in Western Australian Electricity Market

Table 9 lists all generators observed in the market during the data sample that use a technology
considered in this paper (namely, coal, combined cycle natural gas (CCGT), open cycle natural
gas (OCGT), wind, or solar) and have a non-trivial capacity. Capacity cutoffs are based on
a plant’s capacity (rather than a generator’s) since some plants (e.g., PINJAR) have several
small generators. These cutoffs are 20 MW for solar and wind and 100 MW for coal and
gas plants. Generators below this threshold are excluded from estimating production costs
and investment decisions.44 This capacity threshold for inclusion in investment decisions
serves two purposes. First, not allowing small changes in capacity to alter the state reduces
the size of the state space. Including all changes in the set of generators that result from
small generators entering or exiting would make the state space intractably large. Second,
as described in section B, the generators that enter or exit when a firm adjusts its set of
generators are identified using a heuristic of profitability. This heuristic does not take into
account capacity. By only focusing on large generators, there is less dispersion in capacities,
meaning the heuristic is a better approximation of the true profitability of different plants.

44Since small generators are excluded from this analysis, I adjust the total demand for electricity in an
interval downward by the amount produced by the generators not included in the analysis when estimating
the distribution of wholesale market variables, F δ,c,Ξ

t .
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Table 9: List of Generators in Data

Capacity Heat Rate Emissions Rate Entered Exit
Generator Firm Technology (MW) (GJ/MWh) (kgCO2-eq/MWh) Year Year

ALBANY_WF1 ALBGRAS wind farm 22 – 0.0 – –
ALINTA_PNJ_U1 ALINTA OCGT 157 12.0 627.0 – –
ALINTA_PNJ_U2 ALINTA OCGT 151 12.0 627.0 – –
ALINTA_WGP_GT ALINTA OCGT 371 11.5 601.0 2007‡ –
ALINTA_WGP_U2 ALINTA OCGT 210 11.5 601.0 2007‡ –
ALINTA_WWF ALINTA wind farm 88 – 0.0 – –
BADGINGARRA_WF1 ALINTA wind farm 131 – 0.0 2018 –
BW1_BLUEWATERS_G2 GRIFFINP coal 223 9.8 908.0 2008 –
BW2_BLUEWATERS_G1 GRIFFINP coal 229 9.8 908.0 2008 –
COCKBURN_CCG1 WPGENER CCGT 265 9.0 470.0 – –
COLLIE_G1 WPGENER coal 342 9.5 884.0 – –
EDWFMAN_WF1 EDWFMAN wind farm 83 – 0.0 – –
GREENOUGH_RIVER_PV1 GRENOUGH solar pv 40 – 0.0 2018§ –
INVESTEC_COLLGAR_WF1 COLLGAR wind farm 214 – 0.0 2010 –
KEMERTON_GT11 WPGENER OCGT 173 12.2 638.0 – –
KEMERTON_GT12 WPGENER OCGT 173 12.2 638.0 – –
KWINANA_G1 WPGENER coal∗ 116 11.7† 850.0† – 2010
KWINANA_G2 WPGENER coal∗ 117 11.7† 850.0† – 2010
KWINANA_G3 WPGENER coal∗ 113 11.7† 850.0† – 2010
KWINANA_G4 WPGENER coal∗ 117 11.7† 850.0† – 2010
KWINANA_G5 WPGENER coal∗ 189 11.7 850.0 – 2014‡

KWINANA_G6 WPGENER coal∗ 195 11.7 850.0 – 2014‡

KWINANA_GT2 WPGENER OCGT 109 9.3 486.0 2011 –
KWINANA_GT3 WPGENER OCGT 110 9.3 486.0 2011 –
MERSOLAR_PV1 SUNAUST22 solar pv 100 – 0.0 2019 –
MUJA_G1 VINALCO coal 58 10.4† 972.5† – 2016
MUJA_G2 VINALCO coal 58 10.4† 972.5† – 2016
MUJA_G3 VINALCO coal 59 10.4† 972.5† – 2016
MUJA_G4 VINALCO coal 60 10.4† 972.5† – 2016
MUJA_G5 WPGENER coal 214 11.0 1 028.0 – 2022‡

MUJA_G6 WPGENER coal 207 11.0 1 028.0 – 2022‡

MUJA_G7 WPGENER coal 228 9.8 917.0 – –
MUJA_G8 WPGENER coal 226 9.8 917.0 – –
MWF_MUMBIDA_WF1 MUMBIDA wind farm 55 – 0.0 2012 –
NEWGEN_KWINANA_CCG1 NEWGEN CCGT 345 7.9 759.8 2007 –
NEWGEN_NEERABUP_GT1 NGENEERP OCGT 345 11.1 659.7 2008 –
PERTHENERGY_KWINANA_GT1 WENERGY OCGT 122 14.1 763.0 2009 –
PINJAR_GT1 WPGENER OCGT 43 13.5 706.0 – –
PINJAR_GT10 WPGENER OCGT 122 12.1 653.0 – –
PINJAR_GT11 WPGENER OCGT 138 12.0 638.0 – –
PINJAR_GT2 WPGENER OCGT 42 13.5 706.0 – –
PINJAR_GT3 WPGENER OCGT 43 13.2 690.0 – –
PINJAR_GT4 WPGENER OCGT 43 13.2 690.0 – –
PINJAR_GT5 WPGENER OCGT 45 13.2 690.0 – –
PINJAR_GT7 WPGENER OCGT 41 13.2 690.0 – –
PINJAR_GT9 WPGENER OCGT 128 12.1 653.0 – –
PPP_KCP_EG1 WPGENER OCGT 108 9.0 470.0 – 2021
SWCJV_WORSLEY_COGEN_COG1 WPGENER OCGT 128 12.0 627.0 – 2015
WARRADARGE_WF1 WARADGE wind farm 178 – 0.0 2019 –
YANDIN_WF1 ALINTA wind farm 208 – 0.0 2019 –

Entry and exit years are based on the calendar used by the WEM, which runs from October 1 through September 30 of
the next year. If a generator first began producing in January of 2015, therefore, its entry year is 2014 (corresponding
to the year beginning in October 2014. An entry year of “–” means the generator entered before the sample period.
Firm names are provided using the names reported by AEMO; for the three largest firms, WPGENER is commonly
known as “Synergy,” ALINTA as “Alinta,” and GRIFFINP as “Bluewaters Power.” ∗These generators are capable of
using coal, natural gas, or distillate and have historically used all three. During the sample period they mostly used

coal (Global Energy Monitor, 2023). They are therefore classified as coal plants. †The data sources used for heat rates
and emissions rates did not include data for these generators. The values used are therefore an average of either the
other generators within a power plant for which data is available or, lacking that, an average of others with the same
technology. ‡These entry/exit years have been adjusted by at most a year so that generators part of the same plant

that enter/exit around the same time have the same entry/exit year (since they presumably were part of a single
decision by the firm). §GREENOUGH_RIVER_PV1 was first constructed as a 10 MW facility in 2011; however, in

2018 (using the year naming convention described), it was expanded by 30 MW, so this facility is classified as entering
in 2018 since that is when most of its capacity was installed.
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A.3 Capacity Costs

Generator cost data comes from two different sources. The first source is a series of reports
produced by the U.S. Energy Information Administration (EIA) on capital costs of electricity
generators (U.S. Energy Information Administration, 2010, 2013, 2016, 2020). The reports
are for the years 2010, 2013, 2016, and 2019. Each report provides capital costs in US$/kW
for different generator technologies, including all of those considered in this paper.45 The
second source is the 2012 Australian Energy Technology Assessment (Australian Bureau of
Resources and Energy Economics, 2012), which I shall refer to as AETA. While this report only
provides a snapshot in time, unlike the series of EIA reports that construct a panel, AETA
does helpfully provide cost estimates specific to the South West Interconnected System in
Western Australia that I study in this paper.

I use the EIA reports to construct a time series for each technology and AETA to convert the
time series based on U.S. estimates to those for the electricity market in Western Australia. In
order to construct a complete time series of generator costs over time for Western Australia, I
first interpolate the time series provided by the EIA report. For each energy source, I linearly
interpolate values in years not covered by an EIA report,46 providing me with ĈEIA

st . Next,
I convert the interpolated EIA estimates to those for Western Australia. To do so, I assume
that Western Australia costs are a source-specific proportion αs of the EIA costs, common
over time. Explicitly, I assume

CW A
st = αsCEIA

st .

Since I have cost estimates for Western Australia in 2012, I can recover {αs}s:

α̂s =
CW A

s,2012

ĈEIA
s,2012

.

For years past 2019, I assume costs remain the same as those in 2019, i.e. ĈW A
st = ĈW A

s,2019 for
all t > 2019. Calibrated investment costs

{
ĈW A

st

}
s,t

are summarized in table 4.

B State Space Details (for Online Publication)

The state space is defined by which generators are in the market and the year (which cap-
tures the investment costs, the distribution of wholesale market variables F δ,c,Ξ

t , and how
many years remain until generator portfolios are locked in). Section 3.3.2 describes at a high

45In some cases the technologies provided are more narrowly defined than in this paper. For coal, I use
the capital costs of ultra-supercritical coal plants without carbon capture; for wind, onshore wind with a
small footprint in coastal regions; and for solar, solar PV with single tracking. (For natural gas plants, the
technologies are defined at the same level as used in this paper, CCGT and OCGT.)

46The sample covers a years before 2010. For these years, I use the earliest values in the EIA reports.
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level how firms’ choice sets are constructed. Firm’s choice sets are potentially multidimen-
sional, with each dimension corresponding to a different technology (e.g., coal, CCGT, etc.)
and whether the technology is expandable or retirable. Expandable dimensions mean new
generators of that technology can be built, while retirable dimensions mean that generators
can be removed from the portfolio. The generator portfolio component of the state space is
the cross product of all firms’ possible portfolios. The following paragraphs explain further
details about how the state space is constructed, and table 10 provides a complete description
of the generator portfolio state space.

Dimensions In each firm’s component of the state space, there are potentially multiple
technologies. I assume that firms are able to include in their portfolios only the technologies
I observe them use in the data. This restriction keeps the size of the state space tractable
and is consistent with observed firm behavior, as I never observe firms make a substantial
investment in a new technology.

For each type of technology, I classify it as expandable (can build new plants) or retirable
(can only shut down existing plants). I classify renewables as expandable. Coal plants are
classified as retirable; however, I observe in the data one introduction of a new coal plant by
Bluewaters Power, so coal is expandable for Bluewaters Power’s generator portfolio. Natural
gas can be expandable or retirable. Natural gas plants that I observe enter are classified as
expandable, while those that I observe being retired are classified as retirable. I classify open
cycle gas plants that are not retired in the data as retirable, while combined cycle gas plants
are classified as expandable.

Profitability Heuristic Along each dimension, firms choose which plants to adjust. Since I
assume that all options within a dimension have the same idiosyncratic cost shock (see section
3.3.2), the order in which a firm would adjust along a dimension depends on the profitability
of adjusting each plant. This profitability ordering depends on three characteristics of the
generators: heat rates, capacities, and emissions rates (when the carbon tax is nonzero).
It would be infeasible to determine a profitability ordering taking into account all three of
these characteristics. Doing so would require simulating wholesale markets for every possible
combination of plants. Instead, I use as a heuristic the order I observe in the data and, where
that is uninformative, the heat rate.

Specifically, if I observe in the data a firm retire plant 1 and several years later plant 2, I
assume plant 1 will always be retired before plant 2. Since not all plants are adjusted, if I do
not observe an adjustment, I order the plants by heat rates. For example, suppose the firm
in the example also has plants 3 and 4 of the same technology. If plant 3 has a higher heat
rate than plant 4 (meaning a higher marginal cost of production), I assume the firm would
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Table 10: Description of Generator Portfolio State Space

Expand / Total
Firm Technology Retire State Generators Capacity (MW)

WPGENER coal retire 5 ∅ 0
4 COLLIE_G1 342
3 MUJA_G7, MUJA_G8 796
2 MUJA_G5, MUJA_G6 1 217
1 KWINANA_G5, KWINANA_G6 1 601
0 KWINANA_G1–KWINANA_G4 2 064

gas expand 0 COCKBURN_CCG1 265
1 KWINANA_GT2, KWINANA_GT3 484
2 new natural gas (combined cycle) 884

gas retire 4 ∅ 0
3 KEMERTON_GT11, KEMERTON_GT12 346
2 PINJAR_GT1–PINJAR_GT9 991
1 PPP_KCP_EG1 1 100
0 SWCJV_WORSLEY_COGEN_COG1 1 228

ALINTA gas expand 0 ALINTA_PNJ_U1, ALINTA_PNJ_U2 308
1 ALINTA_WGP_GT, ALINTA_WGP_U2 889
2 new natural gas (combined cycle) 1 289

wind expand 0 ALINTA_WWF 88
1 BADGINGARRA_WF1 219
2 YANDIN_WF1 427
3 new wind farm 827
4 new wind farm 1 227

GRIFFINP coal expand 0 ∅ 0
1 BW2_BLUEWATERS_G1, BW1_BLUEWATERS_G2 452

small firms coal retire 1 ∅ 0
0 MUJA_G1–MUJA_G4 236

gas expand 0 ∅ 0
1 NEWGEN_KWINANA_CCG1 345
2 NEWGEN_NEERABUP_GT1 690
3 PERTHENERGY_KWINANA_GT1 812
4 new natural gas (combined cycle) 1 212
5 new natural gas (combined cycle) 1 612

solar expand 0 ∅ 0
1 GREENOUGH_RIVER_PV1 40
2 MERSOLAR_PV1 140
3 new solar pv 540
4 new solar pv 940

wind expand 0 ALBANY_WF1, EDWFMAN_WF1 105
1 INVESTEC_COLLGAR_WF1 319
2 MWF_MUMBIDA_WF1 374
3 WARRADARGE_WF1 552
4 new wind farm 952
5 new wind farm 1 352

Note: Rows within a firm-technology category describe a state along that dimension. The dimension could
include expandable plants (those that firms can choose to build) or retirable plants (those that firms can

choose to retire). If the category corresponds to expandable plants, movements along that dimension
(building additional plants) are in descending order. If it corresponds to retirable plants, movements along

that dimension (retiring additional existing plants) are in ascending order. An implication of this ordering is
that for a particular row, the state in that dimension includes all generators listed in that row as well as

those above in the same firm-technology category. The final column lists the total capacity in that state for
all of the generators within that firm-technology category that are in the market in that state. For example,

for WPGENER-coal, state 2, WPGENER has the following coal generators: COLLIE_G1 and
MUJA_G5–MUJA_G8, with a total capacity of 1 217 MW. It can choose to move from state 2 to state 3,

retiring the generators MUJA_G5–MUJA_G6, leaving it only with MUJA_G7–MUJA_G8 and
COLLIE_G1.
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retire plant 3 before it would retire plant 4.47

New Generators The definition of the state space expands beyond just those generators
that have been observed in the data. It also includes the possibility of building additional
natural gas, solar, and wind generators. I assume that new natural gas plants have a heat
rate of 8.0 GJ/MWh and an emissions rate of 450 kgCO2-eq/MWh. All new generators are
assumed to have a capacity of 400 MW.

C Additional Results (for Online Publication)

C.1 Welfare

Figures 9 and 10 display the impact of renewable subsidies on capacity and production.

47One may be concerned that when a carbon tax is introduced, the emissions rate matters for profitability,
potentially changing the profitability ordering. Emissions rates, conditional on a technology, depend primarily
on a generator’s heat rate, however. Profitability orderings are therefore unlikely to change in response to a
carbon tax, meaning we can use the same orderings in the counterfactuals.
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Figure 9: Impact of Renewable Investment Subsidy on Investment and Production
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Note: Depicted in each panel is the expectation for a particular energy source summed across all strategic
firms and the competitive fringe for a particular value of a renewable investment subsidy.

Figure 10: Impact of Renewable Production Subsidy on Investment and Production
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Note: Depicted in each panel is the expectation for a particular energy source summed across all strategic
firms and the competitive fringe for a particular value of a renewable production subsidy.
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Table 11: Notation

Symbol Description
t indexes years (going from October 1 – September 30)
h indexes wholesale half-hourly intervals, which belong to a particular year t
f indexes all firms
F set of firms
FL set of large firms
FS set of small firms
Gt set of generators in year t
g indexes generators

s (·) returns the technology of a generator
Kg nameplate capacity of generator g (in MW)
hrg heat rate of generator g (in GJ / MWh)
eg emissions rate of generator g (in kg CO2-eq / MWh)
Qt distribution of demand in year t
δgh capacity factor for generator g in interval h

K̄gh available capacity for generator g in interval h (in MW)
cgh production cost for generator g in interval h

pinput
sh technology-specific input price for technology s in interval h (in A$ / GJ)
τt carbon tax in year t (in A$ / kg of CO2-eq)

εgh idiosyncratic production cost shock for generator g in interval h

Q̄h perfectly inelastic demand in interval h
bgh generator g’s bid in interval h

P̄t price cap in year t (in A$ / MWh)
Qh (·) demand satisfied in interval h (in MWh)
Ph (·) wholesale market spot price in interval h (in A$ / MWh)
Bh (·) electricity demand rationed via blackouts in interval h (in MWh)
qgh (·) quantity produced by generator g in interval h (in MWh)
πfh (·) wholesale profit function for firm f in interval h (in A$)
uih (·) consumer i’s indirect utility function in interval h

Pt end-consumer price for electricity in year t (in A$ / MWh)
ξih consumer i’s preference parameter for electricity in interval h
ϵ elasticity of electricity consumption with respect to the end-consumer price

Ξh aggregated preference parameters for electricity in interval h
P avg

t quantity-weighted average wholesale price in year t (in A$ / MWh)
cretail marginal retail cost of delivering electricity (in A$ / MWh)
Πft (·) yearly expected profit for firm f in year t (in A$)

κt capacity price in year t (in A$ / MW)
Υ (·) capacity payment (in A$)
ms cost of maintaining a MW of capacity of a generator of technology s (in A$ / MW)

M (·) yearly capacity maintenance cost (in A$)
T final year in which possible to adjust set of generators
Ωt order in which firms can move in year t
X the set of firms that have already moved or are now able to move

Γf (·) set of possible combinations of generators to which firm f can adjust
Cst cost of new generator capacity of technology s in year t (in A$ / MW)

ηf,G,t idiosyncratic adjustment cost shock for firm f , adjustment decision G, in year t
β discount rate (at yearly level)

σΩ
Y t (·) policy function for firms in Y in year t under ordering Ω

Xf (·) set of firms that have adjusted prior to f , and including f , under an ordering
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