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Abstract

We develop a model of competition in prices and infrastructure among mobile network
operators. Although consolidation increases market power, it can lead to more efficient
data transmission due to economies of scale, which we derive from physical principles.
After estimating our model with French consumer and infrastructure data, equilibrium
simulations reveal that while prices decrease with the number of firms, so do download
speeds. Our framework also allows us to quantify the impact of spectrum allocation. The
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1 Introduction

In the mobile telecommunications industry, market structure is shaped by antitrust policy
and the regulation of radio frequencies, or spectrum. Spectrum is necessary for the operation
of a mobile network, and a firm’s spectrum holdings (the set of frequencies it has the right
to operate) impacts its quality of service, i.e., download speeds. Recently, mobile network
operators in many countries have sought to merge and combine their spectrum holdings, with
mixed responses from regulators.1 In recent discussions regarding both antitrust policy and
spectrum allocation, quality of service has emerged as a prominent concern.2

In this paper, we develop a structural model of the mobile telecommunications industry to
capture the impact of changes in market structure (the number of network operators and
the allocation of spectrum among them) on equilibrium outcomes such as prices, investment,
download speeds, and welfare. We follow an interdisciplinary approach, relying on tools from
empirical industrial organization to model market power, and using standard telecommuni-
cations engineering models to credibly quantify scale efficiencies. Our framework allows us to
address the various impacts of regulating market structure, such as the trade-off between mar-
ket power and economies of scale. Traditionally, the trade-off means that consolidation may
lead to higher or lower prices (Williamson, 1968); in mobile telecommunications, we find that
consolidation presents a trade-off between higher prices and improved quality of service. As
our notion of market structure includes not only the number of firms but also their spectrum
holdings, our framework also allows us to consider the impact of changes in the allocation of
spectrum to and within the industry.

Our structural model comprises firms, consumers, and data transmission. Firms (mobile
network operators) choose the prices of their mobile service plans and their level of investment
in infrastructure, which consumers rely on for data consumption. Consumers choose a mobile
phone plan as well as how much data to consume using that plan given its download speed. Our
model of data transmission describes how download speeds emerge from firms’ and consumers’
decisions.

1Approved mergers include T-Mobile/Orange (UK, 2010), Hutchinson/VimpelCom (Italy, 2016), Sprint/T-
Mobile (USA, 2020), and Teléfonica/Virgin (UK, 2020). Blocked mergers include AT&T/T-Mobile (USA,
2011), TeliaSonera/Telenor (Denmark, 2015), and Teléfonica/Hutchinson (UK, 2016). Anecdotally, network
operators in some countries (e.g., France) have recently avoided proposing four-to-three mergers due to an
expectation that they would be blocked by antitrust authorities.

2For instance, the Sprint/T-Mobile merger was allowed based on the finding “that quality benefits and
dynamic competition serve as countervailing forces to the static analysis that substantially address its pre-
dicted harmful price effects” (Federal Communications Commission, 2019). Genakos, Valletti and Verboven
(2018) study how concentration in mobile telecommunications is related to both prices and investment in in-
frastructure. Turning to spectrum allocation, the Federal Communications Commission’s “National Broadband
Plan” describes the potential consequences of insufficient spectrum allocation to mobile telecommunications:
“higher prices, poor service quality, an inability for the U.S. to compete internationally, depressed demand
and, ultimately, a drag on innovation” (Federal Communications Commission, 2010).
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Download speeds, arguably the crucial measure of quality of service in this context, present
two modeling challenges. First, due to congestion, download speeds depend on consumers’
data consumption decisions as well as firms’ investments. Second, even without considering
congestion, there is no straightforward mapping from firms’ investments to data transmission
rates. This is because data transmission depends on, among other things, the spectrum
operated and the distance over which data is transmitted. We model download speeds relying
on engineering models of data transmission that capture how data is transmitted across space
and how network load is handled (in particular, we follow Błaszczyszyn, Jovanovicy and
Karray, 2014).3

These engineering relationships imply two types of economies of scale that have important
economic implications, which we call economies of density and economies of pooling.

Economies of density result from path loss: as electromagnetic waves carrying data travel,
they lose power. Therefore, a mobile network operator can serve a densely populated area
more efficiently (meaning either a higher download speed at a given cost or the same download
speed at a lower cost) than a sparsely populated area.4 With symmetric firms, the population
density served by each firm is inversely proportional to the number of firms. Consequently,
for a given level of total investment in the industry, mobile data services are of higher quality
when the number of firms is small.5

Economies of pooling relate to the allocation of mobile network resources. When many con-
sumers request data at the same time, data requests enter a queue. Longer queues result in
slower download speeds, and there are economies of scale in serving queues. For example,
if two network operators were to combine both of their customer bases and spectrum, the
combined firm could more efficiently allocate network capacity among customers. This would
increase maximum potential download speeds, reduce congestion, and result in higher aver-
age download speeds. More generally, the allocation of resources serving a stochastic demand
process features economies of scale (Mulligan, 1983; De Vany, 1976; Carlton, 1978).

We estimate a discrete-continuous model of demand for mobile plans and data consumption
based on the French market in 2015. Our estimation relies on a consumer dataset that
includes information about subscriptions and data consumption by plan and municipality
(French communes) for a single mobile network operator, Orange Mobile. We also incorporate

3As we derive our production function and associated scale efficiencies transparently from physical princi-
ples, our study falls within the tradition of engineering production functions of Chenery (1949).

4For example, suppose that the number of base stations per person is held constant across different popu-
lation densities, so that less population-dense areas have lower geographic base station density. Because signals
in the sparsely populated areas will have to travel further on average, they will experience greater path loss,
and they will have inferior service despite receiving the same level of investment per capita.

5Of course, the equilibrium level of investment (per firm and in total) may change with the number of firms.
Our model allows for such changes endogenously, with firms strategically choosing investment in infrastructure.
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measured download speeds from Ookla, detailed (publicly available) data on mobile network
infrastructure from the radio frequency regulator (ANFR), and income distribution data from
the French statistical office (INSEE). While we only observe consumers who subscribe to
Orange Mobile, we also observe the prices and characteristics of all contracts available from
the other network operators, and we prove that the estimation strategy of Berry, Levinsohn
and Pakes (1995) extends to this setting.6

Using a model of the supply side derived from the engineering literature, we recover a small
number of cost parameters from firms’ first-order conditions. Intuitively, once we have es-
timated demand, we can quantify marginal revenue. We can then use the firms’ first-order
conditions and our understanding of marginal revenue to make inferences about firms’ costs.
Firms’ pricing decisions provide information about their costs per user served. Furthermore,
firms’ investment decisions—specifically, the choice of how densely to build base stations—
provide information about the costs of building base stations.

We use the estimated models of demand and supply to compute counterfactual equilibria
under different market structures. Consolidation presents a trade-off for consumers: faster
downloads with higher prices. Focusing on symmetric firms, we find that consumer surplus
(currently the relevant barometer for antitrust policy) is maximized at eight firms. How-
ever, low-income consumers prefer more firms than high-income consumers since high income
consumers have a higher willingness to pay for increased download speeds. Total surplus is
maximized at four firms.

We also quantify the marginal social value of allocating more spectrum to mobile telecommuni-
cations, a crucial value in a regulator’s decision of how to allocate spectrum among industries.
We then compare this value to an individual firm’s willingness to pay for a marginal unit of
spectrum. We find that the marginal social value is about five times greater than an indi-
vidual firm’s willingness to pay.7 This result highlights the importance of using a structural
model to quantify the social value of spectrum. While spectrum auctions may reveal network
operators’ willingness to pay, willingness to pay may be a gross underestimate of spectrum’s
social value in mobile telecommunications.8

We simulate mergers between mobile network operators in France in the short-run, where
infrastructure remains fixed and merging firms combine their network resources. We find that
despite merger efficiencies, all mergers between two operators decrease consumer surplus.

6Our model predicts shares for all products from all providers in the market, but we only require that the
model rationalize product-level market shares for Orange. For other firms, we impose firm-level demand shocks
and require the model to rationalize firm-level market shares. Chu (2010) uses a similar approach.

7Rosston (2003) found social value to be more than ten times firm willingness to pay.
8Our model takes spectrum allocation as given. Thus, while our framework allows us to quantify the

impact of spectrum allocation on outcomes, we abstract away from concerns about the spectrum allocation
mechanism, in contrast to Milgrom and Segal (2020) and Doraszelski et al. (2019).
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Related Literature Most theoretical studies on the relationship between competition and
investment take total industry-wide investment as the outcome of interest (Arrow, 1962; Vives,
2008). However, mobile telecommunications networks feature important sources of economies
of scale, introducing a potential wedge between industry-wide investment and performance.
Even if total investment increases with the total number of firms, quality of service may
decline as network resources are spread more thinly across firms. By augmenting a model of
investment in infrastructure with an engineering-based model of data transmission, we can
directly quantify these scale economies.

A few papers also study investment in mobile telecommunications infrastructure. Granja
(2022) studies investment decisions under universal service regulation in Brazil. Lin, Tang
and Xiao (2022) analyze 4G technology investment under a hypothetical merger, finding that
the merger would reduce investment in this technology. Grajek and Röller (2012) argue
that the empirical evidence suggests that access regulation (forcing incumbents to share their
infrastructure with entrants) reduces incentives to invest in telecommunications infrastructure.
Björkegren (2022) also models endogenous investment in infrastructure, finding that adding a
competitor increases investment in rural areas. Björkegren’s setting is a less-developed country
where geographic coverage is the key product characteristic affected by network operators’
investments; ours is a developed country where we take full geographic coverage for granted,
and quality of service is the key non-price product characteristic.

There is a limited empirical literature studying imperfectly competitive markets in which firms
optimally choose the quality of their products offered. In the seminal theory (Spence, 1975)
and in well-studied empirical contexts such as newspapers (Fan, 2013) and cable television
(Crawford and Shum, 2007; Chu, 2010; Crawford et al., 2018; Crawford, Shcherbakov and
Shum, 2019), quality is a product characteristic that firms can directly control. However,
in the context of mobile telecommunications, a challenge for accurately modeling quality of
service is the simultaneous determination of download speeds and demand for data.

Consumer demand for a network operator’s services depends on its quality of service, and
due to congestion externatlities, its quality of service depends on consumer demand.9 Most
demand models for mobile services do not model the simultaneous determination of demand
and quality of service (including Bourreau, Sun and Verboven (2021), Cullen, Schutz and
Shcherbakov (2020), Fan and Yang (2020), Nevo, Turner and Williams (2016), Sinkinson
(2020), Sun (2015)). El Azouzi, Altman and Wynter (2003) and Lhost, Pinto and Sibley
(2015) use queuing theory to model the simultaneous determination of service quality and
choice of service provider as we do; Malone, Nevo and Williams (2017) model congestion in

9Congestion externalities are negative network externalities. Related challenges arise in markets with
positive network externalities; e.g., Lee (2013).
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broadband services with a different framework. Our study builds on these by incorporating
path loss (and therefore economies of density) and by estimating a product-level demand
model using detailed consumption and quality data (therefore allowing us to tackle questions
of market power). Meanwhile, in the engineering literature, Hua, Liu and Panwar (2012)
examine the economies of density and pooling benefits from integrating network resources.
However, they do not employ an economic equilibrium framework that endogenizes consumers’
choices and firms’ investments.

While our analysis assesses the impact of market structure on prices and quality of service,
market structure in mobile telecommunications has broader potential impacts: on product
proliferation and the types of contracts offered (Seim and Viard, 2011; Fan and Yang, 2020),
on coordinated effects (Bourreau, Sun and Verboven, 2021), and on incentives to engage in
vertical restrictions (Sinkinson, 2020).

Outline The remainder of this paper is organized as follows. Section 2 presents the data
along with descriptive statistics and institutional details. Section 3 introduces the demand
model and describes its identification and estimation. Section 4 presents the engineering-
based industry model, explains the sources of economies of scale, and lays out the estimation
of firms’ cost parameters. Section 5 reports estimation results. Finally, section 6 presents
several counterfactual analyses. Section 7 concludes.

2 Data and Background

2.1 Firms

We focus on the French telecommunications market in October 2015. During this period, the
French mobile industry comprised four mobile network operators (MNOs): Orange Mobile
(ORG), SFR-Numericable (SFR), Bouygues Telecom (BYG) and Free Mobile (FREE).

MNOs own and operate network infrastructure (with some network sharing, which we will
describe in section 4.3). In contrast, mobile virtual network operators (MVNOs) sell plans to
customers without owning their own network resources; instead, they rent access to MNOs’
networks. Providing network access to MVNOs is mandatory and enforced by regulation,
but the access charge is freely negotiated with the MNO. MVNOs accounted for 10.6% of all
mobile contracts in late 2015 (ARCEP, 2016).

2.2 Products and Characteristics

We collect data on mobile phone plan terms (including monthly prices, data limits, and voice
limits) from online quarterly catalogs of offers proposed by the four MNOs and the largest
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MVNO, EI Telecom.

By 2015, wireless plans were largely differentiated based on data services, with more expen-
sive plans having larger data allowances. Most plans featured unlimited voice allowances;
only some low-end plans with zero or small data allowances had limited voice minutes. Fur-
thermore, while data consumption continued to grow rapidly through 2015, voice and text
message usage had stabilized.10

Table 1 describes our choice set, with monthly prices and data limits representing the main
characteristics of interest. Monthly data limits are “soft,” in the sense that customers can
still use data services after exceeding the limit, but with significantly throttled download
speeds.11 We aggregate phone plans by data limit category (less than 500 MB, 500–2 999
MB, 3 000–6 999 MB, and more than 7 000 MB) and by whether they include unlimited voice
services. The choice of four data limit groups is motivated by the observation that network
operators typically advertise three or four tiers of plans. For each plan group and firm, we
select a representative plan to include in our choice set.

Our representative plans do not feature bundled services like fixed broadband, fixed telephony,
and television services. Moreover, plans have different contract lengths (no commitment, a 12-
month commitment, or a 24-month commitment). Since most consumers subscribe to plans
with a 24-month contract duration, our representative plans feature 24-month commitments.
Within each group of a firm’s plans, defined by data and voice limits, the representative
plan we select is the one that is the least expensive among the 24-month commitment plans
available to new subscribers (after adjusting the monthly price for a handset subsidy as
described below). This plan always excludes home broadband and television services. Thus,
our choice set of representative plans consists entirely of mobile-only plans.

The representative phone plans in our model’s choice set reflect the characteristics of plans
actually available in the market, with the exception of the monthly price. For plans that
include a handset subsidy, we adjust the price by subtracting the value of the handset subsidy
from the monthly price. Details on how we calculate this subsidy can be found in Appendix
C.1.1.

In the customer database described below, we observe market shares for plans with only
wireless services as well as plans with bundled services. Each actual plan in these data is then
associated with a representative plan (grouped by data limit and whether voice minutes are
limited), and our estimation method takes the market shares of the representative plans to be

10Source: Séries chronologiques annuelles (1998-2015) data released by ARCEP. Obtained from
http://www.arcep.fr/fileadmin/reprise/observatoire/serie-chrono/series-chrono-annuelles-1998-2015p.xlsx
September 23, 2022.

11The data allowances we measure are the phone plans’ baseline allowances. We ignore add-on options.
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the aggregate market share of all the actual products associated with them.12 For instance,
our empirical model features one high-data-limit plan for Orange. We treat the price of this
plan as 38.74 AC. This price corresponds to an observed price of 54.99 AC for this plan minus
16.25 AC for the value of the associated handset subsidy. We calculate the market share of this
representative plan as the sum of market shares of all eleven high-data-limit contracts offered
by Orange.

Table 1: The Choice Set

Data Min Max Min Max
Price Limit Unlimited Plans Price Price Limit Limit

Operator (AC) (MB) Voice Represented (AC) (AC) (MB) (MB)
Orange 12.07 50 No 11 4.99 30.99 0 50
Orange 14.99 1000 No 4 14.99 14.99 1 000 1 000
Orange 22.91 1000 Yes 2 22.91 24.99 1 000 1 000
Orange 30.91 4000 Yes 5 19.99 48.99 3 000 5 000
Orange 38.74 8000 Yes 11 38.74 165.99 8 000 20 000
Bouygues 8.07 0 No 6 3.99 11.32 0 20
Bouygues 14.99 1000 No 3 14.99 14.99 1 000 1 000
Bouygues 20.91 3000 Yes 4 19.99 29.99 3 000 5 000
Bouygues 33.74 10000 Yes 4 32.70 72.70 10 000 20 000
Free Mobile 2.00 50 No 1 2.00 2.00 50 50
Free Mobile 19.99 3000 Yes 1 19.99 19.99 3 000 3 000
SFR 12.07 100 No 5 5.99 14.99 100 200
SFR 14.99 1000 No 3 14.99 19.99 1 000 1 000
SFR 22.91 1000 Yes 3 22.91 29.99 1 000 1 000
SFR 31.91 5000 Yes 5 19.99 43.99 3 000 5 000
SFR 37.74 10000 Yes 9 36.70 149.99 10 000 20 000
MVNO 7.99 0 No 13 7.99 18.99 0 200
MVNO 17.99 1000 No 5 9.99 17.99 500 1 000
MVNO 19.99 500 Yes 10 19.99 35.99 500 2 000
MVNO 42.99 5000 Yes 13 12.99 61.99 3 000 5 000
MVNO 64.99 10000 Yes 4 64.99 76.99 10 000 10 000

Note: Each row corresponds to an object in the choice set, i.e., a representative product. The minimum and
maximum prices and data limits are over the set of plans represented by each representative product in the
choice set. The representative plan is the least expensive within the group of plans that has a commitment
of 24 months; therefore, because some plans have commitments of less than 24 months, it is possible for the
minimum price to be lower than the representative plan’s price.

We do not explicitly distinguish between pre- and postpaid phone plans. Most French con-
sumers subscribe to postpaid plans, accounting for 83% of the market in late 2015 (ARCEP,
2016). While postpaid plans require consumers to pay for their consumption at the end of
a monthly billing period, prepaid plans require customers to pay in advance. Prepaid plans
generally involve low data limits and limited voice allowances.

12The Orange customer database includes consumers on plans that are no longer available. These plans,
like available plans, are all mapped to a representative plan and consumers subscribing to these plans will
contribute to the market share of the associated representative plan.
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For MVNOs, our choice set includes one representative plan for each category; that is, we effec-
tively assume that there is one representative MVNO firm. Representative MVNO contracts
are selected from the largest MVNO (EI Telecom) in the same way we select representative
contracts for MNOs.

2.3 Demand Data

Our main demand data source is a proprietary dataset based on the universe of mobile con-
tracts for one operator, Orange Mobile, in October 2015. This dataset includes the number
of subscribers to and the usage of mobile data services by plan and municipality. Note that
we focus only on the residential market for mobile services, ignoring business customers.
Residential customers represented 89% of mobile subscriptions in 2015 (ARCEP, 2016).

The customer dataset is complemented by data on the quality of mobile data services, as
measured by download speeds. Due to congestion, delivered download speeds are not solely
a function of infrastructure and geographic characteristics. Congestion arises because the
available bandwidth is shared among users and, as a result, the greater the number of users,
the lower the quality (as measured by download speed). At the same time, the number of users
(and therefore the demand for data) on a network depends on quality. In our counterfactuals,
we employ a model in which demand and quality of service are simultaneously determined,
but for the purpose of estimation, we rely on a direct measure of download speeds as our
measure of quality. Speedtest is a service offered by the firm Ookla that allows users to
check their download and upload speeds. We use a proprietary dataset provided by Ookla on
over one million speed tests in France from the second quarter of 2016 that include measured
download speed, the time of the test, the location of the user, and the mobile network operator.
Using these speed tests, we construct a measure of experienced download speeds for each
mobile network operator in each municipality. Section C.2 in the data appendix explains the
construction of this quality measure in detail.

Markets are defined as municipalities (French communes). We limit our analysis to relatively
populous markets, specifically, those with a population greater than 10 000, resulting in a
total of 589 markets.13 We limit ourselves to populous markets because active network shar-
ing (where network operators share the transmitting components of their infrastructure) is
relatively common in rural areas but not practiced in urban areas, with the exception of Free
Mobile’s reliance on Orange’s network for 2G and 3G (but not 4G) traffic, with caps on the
speeds available to Free customers. Even in this case, Free must rely on its own 4G infras-
tructure to deliver competitive download speeds. Thus, for our sample, we are comfortable

13There are 592 municipalities with a population exceeding 10 000, but we exclude three municipalities
because we lack a sufficient number of download speed tests to construct reasonably precise quality measures
for them. This yields a total of 589 markets in our sample.
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associating a firm’s measured download speeds with that firm’s own investments in infrastruc-
ture. Municipality-level market size is defined as the population age 12 and older, obtained
from the French Bureau of Statistics, INSEE. While France has about 36,000 municipalities,
the 589 in our sample contain 43.5% of France’s population.

For network operators other than Orange, we only have market shares at the national level
from GSMA Intelligence. Table 2 presents the market shares of each firm in October 2015.

Table 2: Aggregate Market Shares of Alternatives

Market Size (millions) ORG SFR BYG FREE MVNO Non-users

56.5 29.4% 13.4% 17.2% 21.5% 10.6% 8.0%
Note: Data reported by the regulator (ARCEP, 2016) provides the relative share of MVNOs and MNOs.
Relative shares within MNOs are obtained from GSMA Intelligence. Shares are adjusted to allow for 8%
outside option share, consistent with CREDOC (2015).

Our econometric approach makes use of the income distribution. We take income deciles (over
households) for each municipality from the 2011 population census conducted by the French
Bureau of Statistics (INSEE)

2.4 Infrastructure Data

Finally, we obtain detailed data on infrastructure from the national radio communications
regulator (ANFR). These data describe the locations of all mobile base stations, along with
the number of antennas and frequencies operated by each network operator.14

Ultimately, we want to quantify the typical cell for each municipality, characterized by the
area served by base stations and the bandwidth operated. For bandwidth, we compute the
total bandwidth operated across all base stations for each operator and municipality. For mu-
nicipalities with an uneven population distribution, dividing municipality area by the number
of base stations would be a misleading measure of the area of the cell size experienced by
most users. The concentration of base stations within sparsely inhabited areas is typically
low, for such areas have few users and low data demand. Instead, we consider a measure of
the “adjusted area” of a commune. We compute the mean population density by averaging
over persons rather than space (equivalently, we take the contraharmonic mean of population
density across space).15 The adjusted area is defined as the municipality’s population divided
by our mean population density.16 If a municipality were to consist of a populated area with

14This database is publicly accessible at https://www.cartoradio.fr/.
15The data we use for this is the Gridded Population of the World, v4, available at https://sedac.ciesin.

columbia.edu/data/collection/gpw-v4.
16For example, Fontainbleau is a relatively populous commune consisting of a town surrounded by a forest.
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a uniform population density as well as an area with zero population density, then this way
of measuring a municipality’s population density captures the population density of the pop-
ulated area, and the adjusted area would equal the populated area. We then measure our
object of interest, the area served by a typical base station, as the adjusted area divided by
the number of base stations.

In addition to infrastructure data from ANFR, we use traffic data from OSIRIS, which is an
internal database provided by Orange. OSIRIS provides the total volume of data traffic per
network cell over time. We use these volumes to calculate data demand rates, which we then
use to calibrate parameters of the data transmission model.

2.5 Descriptive Statistics

Table 3 provides summary statistics for our variables of interest.

Table 3: Summary Statistics

Mean Std. Dev. Min. Max.
Quality and market data
Market average usage (MB) 1 128 204 579 1 829
Quality Orange (Mbps) 32.82 11.11 3.97 84.98
Quality Bouygues (Mbps) 23.70 9.65 0.60 72.97
Quality Free (Mbps) 23.15 11.03 1.56 56.74
Quality SFR (Mbps) 17.57 8.58 0.39 52.30
Quality MVNO (Mbps) 24.70 7.04 5.13 48.87
Median income (Euros) 13 035 3 177 5 152 31 320
Number of markets 589
Tariff data
Price 23.47 14.22 2.00 64.99
Price (Orange) 23.92 9.90 12.07 38.74
Price (Others) 23.33 15.32 2.00 64.99
Data limit 3 081 3 484 0 10 000
Number of phone plans 22
Infrastructure data
Bandwidth per firm (MHz) 70.69 30.42 0.00 140.20
Number of base stations 7.47 21.47 0 511
Effective cell radius (km) 1.44 0.93 0.26 7.64

Note: Customer, quality, market, and infrastructure data summary statistics are (unweighted) across markets.
Tariff data summary statistics are across mobile phone plans.

Measured quality (download speeds) varies substantially both across and within markets.
Across markets, the average standard deviation for an operator is 9.56 Mbps, and across

While the population density of the town is relatively high, the population density of the commune appears
low if we divide by the commune’s total area. Our measure of adjusted area for Fontainbleau is 69.6 square
kilometers, while the raw municipality has an area of 172 square kilometers.
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Figure 1: Histograms of Qualities by Operator
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Note: This figure shows the average download speeds at the market level for each operator. Dashed vertical
lines represent the average of the market-level averages by operator, unweighted by population. The scale of
the x-axis is the same across all subplots, allowing for comparisons in the distribution of average download
speeds across operators.

operators, the average standard deviation for a market is 7.92 Mbps. Figure 1 displays
histograms of measured quality across markets for each mobile network operator.17 The raw
Ookla data include few measurements for MVNO operators, so we set MVNO speeds equal
to the average of Orange, Bouygues, and SFR within each market. Anecdotally, MVNOs
contracted with all three of these MNOs in 2015, but not with Free. Pooling the MVNO speed
measurements that we do have across communes gives a roughly similar average download
speed to this imputation: 22.7 Mbps in comparison to a mean of 24.7 Mbps in Table 3.

Data usage is positively correlated with measured quality. Figure 2 plots the relationship
across markets between Orange download speeds and the observed average data usage for
three different data limits.18 Most consumers do not actually reach their data limit in a given

17There is a potential selection concern in these measures of download speeds. Because they come
from voluntary speed tests, it may be the case that measurements tend to happen when consumers
experience slow downloads. However, the levels of download speeds reported in Table 3 are consis-
tent in the aggregate with the levels coming from other sources. We note that for Orange, Bouygues,
and SFR, our average download speeds lie within the values reported by ARCEP for intermediate
and urban density areas (the densities of areas in our sample). For Free, the 23 Mbps average down-
load speed is actually higher than the 19 Mbps number reported by ARCEP. See https://www.arcep.
fr/cartes-et-donnees/nos-publications-chiffrees/couverture-et-qualite-de-service-mobile-2g-3g-4g-5g/
couverture-et-qualite-des-services-mobiles-juillet-2016.html (accessed November 7, 2022).

18The correlations for data limits 1 000 MB, 4 000 MB, and 8 000 MB are, respectively, 0.092, 0.254, 0.176.
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Figure 2: Average Data Usage vs. Measured Quality across Markets
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Note: This figure presents scatter plots that display for three different Orange phone plans the relationship
between the average download speed and the average amount of data consumed per customer. Observations
are at the market level. The line in each subplot is a line-of-best-fit for the observations.

Figure 3: Average Data Usage across Markets
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Note: Each subplot represents, for Orange phone plans with a particular data limit, a histogram of customers’
average data consumption at the market level. Market-level average data consumption for each phone plan is
obtained by, for each market, averaging data consumption across customers in that market subscribing to the
phone plan. Dashed vertical lines represent the average of the market-level averages, unweighted by population.
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month, as demonstrated in Figure 3, which plots the histograms of market-level average data
consumption for three different data limits.19

When measuring data consumption, we must account for the fact that some consumers in our
data subscribe to plans that have somewhat different data limits than that of the relevant
representative plan. For example, a consumer might subscribe to an Orange plan with a 3
GB per month limit, but in our econometric model, we treat them as having subscribed to
Orange’s representative plan with a 4 GB limit. In our descriptive statistics and in model
estimation, we average data consumption only over subscribers that subscribe to plans with
the same data limit as the representative plan.

Markets with higher median incomes tend to have higher market shares for expensive phone
plans. Figure 4 plots the relationship between the median income in each market and the
joint market share of the two most expensive Orange phone plans, with prices of 30.91 AC and
38.74 AC. Median incomes are positively correlated with the market share of these expensive
plans, with a correlation coefficient of 0.495.

Figure 4: Median Income vs. Expensive Contract Market Share
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Note: The figure presents a scatter plot of the median income in a market against the market share of Orange’s
two most expensive phone plans (the 4 GB representative plan and the 8 GB representative plan). The line is
a line-of-best-fit.

3 Demand Model

In this section, we describe a model of consumer choice capturing how consumers choose
mobile phone plans and the amount of data to consume, taking prices and download speeds

19For the data limits 1 000 MB, 4 000 MB, and 8 000 MB, the fraction of the data limit that is consumed
is, respectively, on average, 0.700, 0.621, and 0.590.
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as given. We explain in section 4 how download speeds depend on consumer behavior through
congestion, but since individual consumers are small, download speeds can be treated as
exogenous for the purpose of an individual consumer’s decision. In section 3.2, we discuss
identification and estimation of the demand model’s parameters.

3.1 Demand Model

We begin by introducing some notation that is used in this section as well as in section 4, which
presents the model of supply. There exists a set of mobile phone plans, J , indexed by j. Each
plan j belongs to a particular firm, f (j), and the set of plans provided by a firm is given by Jf .
Consumers belong to different geographic markets, indexed by m, which vary in demographics
and geography (the latter matters for the efficiency of data transmission). To keep the analysis
tractable, we do not model travel or any interdependence between markets. Table 9 in the
Appendix provides a list of all parameters used in the model and their definitions.

Consumers make decisions about to which mobile phone plan (if any) to subscribe to and
how much data to consume using that plan. Each mobile phone plan j in a market m is
characterized by the download speed available in that market, Qf(j),m;20 the price of that
phone plan, Pj ; and a data consumption limit, d̄j . Note that download speeds are common
within a market across plans offered by the same firm, as firms do not discriminate across
plans in the download speeds they offer. Note also that prices and data limits do not depend
on the market. In France, mobile phone plan prices and characteristics (except download
speeds) are set nationally.

A consumer’s indirect utility for a plan j depends on the utility that they derive from con-
suming x Gigabytes of data as well as the product characteristics. This indirect utility is
given by

ujm (x; ϑi, εij , θpi) = wj

(
x, Qf(j),m, ϑi

)
+ θvvj − θpiPj + ξjm + εij , (1)

where wj(·) maps the plan j, data consumption x, and data quality Qf(j),m into the utility
from consumption of mobile data services. This function depends on ϑi, a random variable
that captures how much i values consuming data. Section 3.1.1 explains in detail how we
model the value of data function wj(·) and the role of ϑi. Other plan characteristics that
enter the consumer’s utility include the price, Pj ; whether the plan has an unlimited voice
allowance, captured by vj (equal to 1 if plan j has an unlimited voice allowance, 0 otherwise);
and ξjm, a product-market-specific demand shock. εij is an idiosyncratic product-specific
shock.

Before the realization of the shocks ϑi and εi, there are two sources of ex ante consumer
20While consumers may be mobile, we assume that their choices depend on the network quality in their

municipality of residence.
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heterogeneity. The first is the price sensitivity parameter, θpi. The second is the distribution
of the data value shock, ϑi. As we will explain in the following subsection, this data value
shock is not only a random variable but also has a different distribution for different types of
consumers.

We note that the relatively parsimonious utility function expressed in equation 1 leaves out
product characteristics like geographic coverage, international roaming terms, and download
speeds in markets other than the consumer’s home market. Our specification is based on the
idea that variation in prices and mobile data service quality were the most important aspects
of product differentiation at the time. All operators offered close to complete coverage during
our sample period, so there is very little variation in coverage. Meanwhile, identifying the im-
portance of international roaming terms and/or coverage in neighboring municipalities would
be challenging due to the high-dimensionality of these product characteristics. Additionally,
anecdotal evidence suggests that these characteristics are not particularly important to most
consumers.

3.1.1 Mobile Data Consumption

After subscribing to a particular plan j, a consumer chooses how much data to consume
given the plan’s data consumption limit and download speed, as well as the consumer’s value
of data consumption. They choose this level of consumption to maximize the utility from
data consumption, wj (·). To rationalize finite data consumption even when additional data
consumption entails no monetary cost, our functional form of wj (·) includes a term which
corresponds to the disutility of download times. This disutility is proportional to the amount
of data downloaded and is inversely proportional to the download speed. It can be thought
of as the opportunity cost of time spent downloading. Consumers consume data until the
marginal utility of extra data equals the marginal disutility of additional download time.

A consumer’s utility of data consumption is given by the following functional form:

wj (x, Q, ϑi) = ϑi log (1 + x) − cj (x, Q) . (2)

The first term captures the utility the consumer derives from consuming data. It exhibits
decreasing marginal returns and depends on the parameter governing how much the consumer
values data consumption, ϑi.

The second term in equation 2, cj(·), reflects the cost of the time spent downloading. There
is a discontinuity in download speeds when a consumer reaches their monthly data limit,
d̄j , captured by the two cases in equation 3. Data consumed after reaching the data limit
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downloads at a throttled speed QL.21 Thus, we use the following formula for the time cost of
data downloads:

cj (x, Q) =


θc

x
Q if x ≤ d̄j

θc

(
d̄j

Q + x−d̄j

QL

)
if x > d̄j ,

(3)

where θc is a preference parameter capturing the disutility of waiting for downloads.

We let x∗
jm (·) denote the consumer’s optimal data consumption:

x∗
jm (ϑi) = arg max

x∈R+

{
wj

(
x, Qf(j),m, ϑi

)}
.

This discontinuity in download speeds creates a discontinuity in the marginal cost of data
consumption. Consequently, the first order condition and the structure of the marginal cost
of data consumption yield four possible cases that determine the optimal data consumption:22

x∗
jm (ϑi) =



0 if ϑi ≤ θc
Qf(j),m

ϑi
θc/Qf(j),m

− 1 if θc
Qf(j),m

≤ ϑi <
(

θc
Qf(j)

) (
d̄j + 1

)
d̄j if θc

Qf(j),m

(
d̄j + 1

)
≤ ϑi < θc

QL

(
d̄j + 1

)
ϑi

θc/QL − 1 if ϑi ≥ θc

QL

(
d̄j + 1

)
.

(4)

The first case captures consumer types that consume no data.23 The second case captures
consumer types that consume less than d̄j even without throttling. The third case captures
consumer types that consume more than d̄j if download speeds were not throttled, but under
throttling, the marginal cost of an additional unit of data is greater than the marginal benefit,
so they consume exactly the data limit. The final case captures consumer types that consume
more than d̄j even under throttled download speeds.24

3.1.2 Mobile Phone Plan Decision

A consumer i chooses the mobile phone plan that maximizes their expected utility, where
the expectation is with respect to the data value parameter, ϑi, assumed to be exponentially
distributed:

ϑi ∼ Exponential (θdi) .

21MNOs in France typically use a throttled speed of 128 Kbps (see section C.1.2 in the appendix for more
information about throttled download speeds). We use this value for throttled speeds in our estimation of
demand and cost parameters as well as in our counterfactuals.

22Here we assume that QL < Qf(j),m, which holds in our data.
23We interpret such consumers as those who do not need their mobile plan (e.g., they went out of the

country for the month). In the data, we observe a point mass of consumers who consume zero data—even
among those with high data limit plans.

24Small data limit plans have hard data limits (i.e., there is no throttling). We therefore impose that all
contracts with data limits less than 500 MB cannot consume greater than the associated data limit.
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That consumers do not know their realization of ϑi prior to choosing a plan reflects that
consumers may be unable to perfectly forecast their utility for data.25 While consumers do
not know their ϑi ex ante, they do know their θdi.

The outside option, represented by j = 0, corresponds to not subscribing to any mobile phone
plan. We normalize the outside option’s indirect utility to εi0.

We assume a nested logit structure for these idiosyncratic shocks εij :

εij = ζig(j) + (1 − σ) ηij ,

where ηij is i.i.d. extreme value and ζig is distributed such that εij is extreme value. The
value σ ∈ [0, 1) is the nesting parameter. There are two nests: one containing only the outside
option, and the other containing all mobile phone plans.

We adopt this nested logit structure to more flexibly model substitution to the outside option.
Note that if σ = 0, the model is equivalent to a mixed logit model without nesting. As σ

approaches 1, the model approaches the case where there is no outside option.

After observing their vector of idiosyncratic taste shocks εi, but before knowing their data
value shock ϑi, consumer i chooses the phone plan that maximizes their expected utility.
Their choice of phone plan j∗

im is given by:

j∗
im (εi; θi) = arg max

j∈J ∪{0}

{
E
[
ujm

(
x∗

j (ϑi) ; ϑi, εij , θpi

)
| θdi

]}
, (5)

where the expectation is over ϑi, and θdi is the parameter that controls ϑi’s distribution as
described above. We let θi = (θpi, θdi) capture the heterogeneous preference parameters.

Integrating over idiosyncratic taste shocks, we obtain market shares for each mobile phone
plan conditional on consumer type θi:

sijm (θi) =
∫
1 {j = j∗

im (εi; θi)} dF (εi) , (6)

and integrating over consumer types we get market shares:

sjm =
∫

sijm (θi) dFm (θi) . (7)

These market shares, along with data consumption (given by equation 4), yield the average
25Another reason for including these exponential shocks is that they introduce a smoothness in data con-

sumption that ultimately keeps our GMM objective function continuous.
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data consumed in market m by consumers subscribed to phone plan j:

x̄jm =
∫ ∫

sijm (θi)
sjm

x∗
jm (ϑi) dF (ϑi|θi) dFm (θi) . (8)

3.2 Demand Estimation

In this section, we describe how we estimate the demand model’s parameters using a modified
version of Berry, Levinsohn and Pakes (1995).

We seek to estimate the distribution of consumer parameters, (θpi, θdi, θc, θv, σ)′. Note that we
have two heterogeneous parameters that we allow to vary by income. Specifically, we assume(

log (θpi)
log (θdi)

)
=
(

θp0

θd0

)
+
(

θpz

θdz

)
zi, (9)

where zi is the consumer’s income. We measure income in units of 10 000 AC, data limits in
GB, and quality in GBps.26

3.2.1 Unobserved Demand Component

As is standard in the demand estimation literature, the unobserved demand components ξ

are computed to rationalize observed market shares. We observe the set of products (in our
setting, phone plans) offered by all firms, but we only observe detailed market share data
at the plan-market-level for Orange. For plans offered by other firms, we observe market
shares at an aggregate firm-level. The standard BLP contraction mapping used to solve for
ξ cannot recover the unobserved demand components with market shares at different levels
of aggregation. We therefore use a modified technique (similar to Chu (2010)) that is able to
handle market shares at different levels of aggregation.

Our modified estimation technique rationalizes plan-level market shares for Orange plans and
only the firm-level aggregate market shares for all other firms. Formally, we assume

∀j ∈ J−ORG, ∀m : ξjm = ξf(j),

where J−ORG is the set of non-Orange plans, and f(j) is the firm that corresponds to plan j.27

26Note that the quality measures are in Gigabytes per second (GBps), not Gigabits per second (Gbps).
This conversion is necessary so that the second term in Equation 3 has the interpretation of seconds spent
downloading data.

27Since aggregate market shares are for all of France (and not just the urban communes in our sample), we
would like to sum over all of France when computing the national shock ξf(j) that rationalizes the national
market shares for a firm other than Orange. We therefore construct a “Rest of France” municipality that
aggregates the population and income distributions from all communes not included in our estimation sample.
Download speeds in the Rest of France commune are computed as the average download speeds in all communes
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Appendix B.1 describes a modified version of the BLP contraction mapping that is capable
of solving for the unique vector ξ under the above assumption.

Given the lack of product-level market shares for the firms other than Orange, an alternative
approach would be to aggregate products within each firm and treat each firm as having a
single product. Doing so would rule out within-firm variation in observed characteristics as
well as the unobserved ξ shocks. In contrast, our approach allows observable characteristics
to vary while ruling out within-firm variation in ξ (for firms other than Orange). We have
some ability to evaluate this assumption given that we recover product-level ξ shocks for
Orange. Our estimates indicate that the variation in ξ’s across firms is more substantial than
the variation within firm across municipalities and products. The standard deviation of the
estimated ξjm terms for Orange is 0.149, while the standard deviation of the firm-level ξf(j)

terms is 0.439 (including the mean value for Orange).

3.2.2 Identification

In this section, we formally present our identification approach and offer intuition for how the
variation in the data maps to parameters of interest.

A limitation of our data is that prices are set nation-wide and do not vary by market. More-
over, prices showed very little intertemporal variation around our sample period.28 Figure
5 illustrates the stability of prices over the two years prior to our sample period. Prices of
Orange phone plans are in black, and the prices of other operator plans are in light gray.
Given the lack of price variation, it is difficult to identify price elasticities during the period
we study.

We therefore calibrate price elasticities based on an earlier study. Formally, we calculate the
implied price elasticity of Orange products in market m based on a proportional increase in
all Orange prices, defined as follows:

eORG
m (θ) = d ln sORG,m(P; θ)

d ln PORG
, (10)

where sORG,m(·) is the market share of phone plans offered by Orange and d ln PORG represents
a proportional change in the price of all Orange phone plans.

outside of the 589 in our sample. The “Rest of France” market plays a very limited role in the estimation; we
include it only so that we can calculate aggregate market shares that are comparable to the observed national
market shares.

28Note that Bourreau, Sun and Verboven (2021) consider a time period that includes the entry of Free
Mobile in 2012. Following this entry, there were substantial price changes as the incumbent MNOs reacted to
the new low-cost competitor. In contrast, during the two years leading up to our sample period, price variation
was quite limited.
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Figure 5: Prices of Orange Phone Plans over Two Years
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Note: Black lines represent the prices of Orange phone plans over time. Light gray lines represent the prices
of other mobile network operators’ phone plans over time.

Our source for this calibration is Bourreau, Sun and Verboven (2021), hereafter BSV, who
study the French market around the entry of Free Mobile, a few years earlier than our sample
period. Free’s entry was disruptive, resulting in considerable price and choice set variation,
but prices settled down before the period covered by our data. BSV’s estimates imply a value
of -2.36 for E

[
eORG

m (θ)
]
.29 We therefore require that

E
[
eORG

m (θ)
]

= −2.36 (11)

as a moment in our estimation procedure, described below.

The main assumption behind this elasticity calibration is that Orange’s own price elasticity
was stable between 2013 and 2015, consistent with the lack of price variation during this
period. Given this assumption, the calibration ensures that our demand model features the
same degree of price sensitivity as BSV’s model.

Importantly, we calibrate elasticities, which are functions of parameters, rather than the
parameters themselves. Directly imputing parameters of the utility function from BSV’s
model would not achieve the same effect as imposing equation 11, as our model features
several crucial departures from BSV, including incorporating download speeds, allowing for
endogenous data consumption, and using data limits as a product characteristic. Because
demand elasticities depend on all parameters of the utility function and not just the price

29We calculate the overall own-price elasticity for Orange E
[
eORG

m (θ)
]

using elasticities in BSV’s Table A.4,
diversion ratios in Table A.3, and market shares in Table 3. See Appendix B.2 for the details of this calculation.
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coefficient parameters, using some of BSV’s parameters while changing other aspects of the
demand model would result in demand elasticities that differ from BSV’s model and therefore
have no empirical basis.

Substitution to the outside option (controlled by the nesting parameter σ) is another feature
of the model that our data provide little information on. Thus, we also calibrate our model
to the level of diversion to the outside option implied by BSV’s estimates. Specifically, BSV’s
estimates imply a diversion ratio of 0.036 for substitution to the outside option in response to
a proportional increase in all of Orange’s prices.30 We impose this diversion ratio as another
moment in our estimation procedure. That is, we define

DIV ORG,0
m (θ) = −

ds0,m(P;θ)
d ln PORG

dsORG,m(P;θ)
d ln PORG

,

where d ln PORG again represents a proportional change in the price of all Orange phone plans,
and require that

E
[
DIV ORG,0

m (θ)
]

= 0.036. (12)

While equations 11 and 12 pin down important derivatives of the demand system, there
are other crucial aspects of the demand system that we must estimate using our data. In
particular, we still need to estimate how consumers trade off prices and download speeds (and
how consumers differ in such preferences).

Data utility parameters θd0, θdz, and θc are identified, in part, by matching predicted data
consumption with observed data consumption. Specifically, matching observed and predicted
data consumption effectively identifies the average data valuation parameter θdi conditional
on the cost of download time parameter θc. Equation 4 shows that the responsiveness of data
consumption to download speeds, dx∗

dQfm
, is a function of ϑi/θc. Then, as the distribution of

ϑi is controlled by θdi, the responsiveness of data consumption to download speeds informs
the relative values of θdi and θc.

However, download speeds may be endogenous to demand shocks due to congestion and the
influence of local demand conditions on firms’ investment decisions. Consequently, we instru-
ment download speeds with (log) population densities, which influence experienced download
speeds by changing the level of path loss. Another reason for using an instrument is attenua-
tion bias. Our measures of download speeds are based on limited sample sizes (see Appendix
C.2 for details), and therefore there is a degree of measurement error in the variable we use.

The heterogeneity in data valuations, θdi, depends on the θdz parameter, which controls how
30Appendix B.2 explains how this number is calculated.
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data valuations depend on income. We rely on the covariance between municipality-level
median income and average data consumption to identify θdz.

While the imputed elasticity moment effectively identifies the average θpi, we need a moment
to pin down the heterogeneity in price responsiveness. Variation in median incomes across
markets helps identify how this parameter varies by income. We assume that the demand
shocks ξ are uncorrelated with median incomes.

Finally, the unlimited voice characteristic is assumed to be uncorrelated with demand shocks
in order to identify its coefficient, θv.

In summary, we have the following moments that we use to identify the distribution of prefer-
ence parameters θ. Note that the moments are only evaluated for Orange plans since we only
observe data consumption and plan-market shares for Orange. Because they are only evalu-
ated for Orange plans, we demean the shocks in the moments below (i.e., we use ξjm (θ) − θO,
where θO is a parameter that we estimate and has the interpretation of the average value of
the Orange demand shocks).

Moments
E
[
−eORG

m (θ) − 2.36
]

= 0
E
[
DIV ORG,0

m (θ) − 0.036
]

= 0
E
[
(ξjm(θ) − θO) incmed

m

]
= 0

E [x̄jm(θ) − x̄jm] = 0
E
[
(x̄jm(θ) − x̄jm) incmed

m

]
= 0

E [(ξjm(θ) − θO) log (pop_densitym)] = 0
E
[
(ξjm(θ) − θO) d̄j

]
= 0

E [(ξjm(θ) − θO) vj ] = 0
E [ξjm(θ) − θO] = 0

We use two-stage efficient GMM to estimate θ, searching for θ in an outer loop and solving
for ξ(θ) in an inner loop using the modified contraction mapping described in Appendix B.1.

One concern is that most mobile subscriptions involve 12- or 24-month contracts and cancel-
lation is costly. In this context, it is natural to think that short-run substitution patterns may
understate the long-run responsiveness to price and/or download speeds. We note that our
estimation strategy does not rely on short-run changes in market shares and plan character-
istics, which is the sort of estimation strategy that would be most vulnerable to this concern.
Instead, we rely on cross-sectional variation in download speeds and market shares during
a period in which prices were relatively stable; cross-sectional variation like this arguably
approximates long-run responsiveness.
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4 Industry Model

In this section, we present a model of data transmission and firm competition that endogenizes
download speeds and prices. Section 4.1 presents the engineering model of data transmission.
Section 4.2 then describes how download speeds and data consumption are simultaneously
determined by the engineering model and demand model. Section 4.3 describes how firms
choose the prices of mobile phone plans and the level of investment in infrastructure. Finally,
section 4.4 explains how we estimate cost parameters.

4.1 Engineering Model

In this section, we lay out a formal model of how download speeds are determined by band-
width allocations, investment in infrastructure, and the load imposed on a network by con-
sumers. We rely on standard telecommunications engineering models and are particularly
indebted to Błaszczyszyn, Jovanovicy and Karray (2014).

Section 4.1.1 explains the geometry of base stations and path loss, which is how signal strength
declines with the distance of transmission. Next, in section 4.1.2, we consider the problem of
serving a stochastic demand process and introduce a simple queuing theory model. Section
4.1.3 then discusses the economic implications of each component of the engineering model,
explaining how the path loss of section 4.1.1 leads to economies of density, and how the
queuing model of 4.1.2 leads to economies of pooling.

4.1.1 Base Stations and Path Loss

Channel capacity, Q̄fm, describes the rate at which network operator f can transmit data
in municipality m, averaged across space. Channel capacity can also be understood as what
delivered download speeds would be without congestion. In this section, we derive channel
capacity from basic principles. Ultimately, channel capacity will be larger when firms operate
more spectrum, and smaller when base stations serve larger areas because signals must travel
farther (on average) as the area of a cell increases.

Network operators (not including virtual network operators) own and operate their own net-
works with no sharing of infrastructure. While passive network sharing (the sharing of the
physical structure of base stations) is common, our cost function specification is in a sense
robust to it, as we discuss below. During 2015, active network sharing (which occurs when
equipment that transmits data is shared) occurred primarily in areas with low population
density. Because we want to associate each firm’s quality of service with its own investment
decisions, we ultimately focus on the higher-density areas of France in our analysis. See
Appendix C.3 for further discussion.
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We assume that each municipality has homogeneous population density and that the full land
area is divided into equally-sized hexagonal cells, so that each cell is identical for a given
operator and municipality. We assume that each cell is served by a single base station trans-
mitting an omni-directional signal. A crucial aspect of infrastructure is owned spectrum or
bandwidth, Bfm, which measures the range of frequencies that firm f operates in municipality
m.31 Bandwidth is not a choice variable in our model, but it is an aspect of market structure
that we vary in our counterfactual analysis.

The size of network operator f ’s cells in market m is characterized by Rfm, which is the
cell radius (more precisely, a hexagonal cell’s maximal radius, which is equal to its side
length). We could also think of this choice variable as being the number of base stations
in a given municipality, Nfm. The area served by each cell is Am/Nfm = 3

√
3

2 R2
fm, where

Am is municipality m’s effective land area, and 3
√

3R2
fm/2 is the area of a regular hexagon

with radius Rfm. We take for granted that firms will serve the municipality’s full area.32

Assuming full coverage is standard practice in recent engineering-based studies of mobile
service provision in developed countries, reflecting the idea that quality, not coverage, is
the relevant non-price characteristic that network operators now compete on in developed
countries. We assume that the municipality’s area can be divided into equally-sized hexagons,
effectively ignoring municipality geometry and other spatially explicit details. Heterogeneity
in municipality topography and other features that affect radio transmission can be captured
in a municipality-level spectral efficiency parameter, introduced later in this section.

If a base station devotes its full bandwidth to serving a consumer at location ℓ, that consumer
will receive download speed Bfmqmℓ in megabits per second (data transmission rates generally
scale linearly with bandwidth used). We will soon introduce a precise function to describe
how qmℓ depends on the consumer’s location within the cell, but generally, qmℓ will be lower
for consumers located further from the base station due to path loss, the phenomenon of
signals losing power as they travel.

Suppose that data demand is uniformly distributed across space. Normalizing data demanded
per unit area to unity (this is harmless as the demand rate per unit area would cancel out of
equation 14 below), the total data demanded within a cell is equal to its area. We denote a
cell’s area by A (Rfm) = 3

√
3

2 R2
fm.

To determine the amount of time consumers spend downloading data, we need to integrate
31French firms own the same spectrum in every municipality, but they do not operate their full holdings

everywhere. The most important reason firms sometimes operate less than their full holdings appears to be
that 4G was rolled out gradually—there are some municipalities where at least one of the firms does not yet
operate any 4G spectrum. Our Bfm measures the frequencies that firm f actually uses in municipality m.

32When implementing the model empirically, we use an adjusted measure of land area because the raw land
area may overstate the area that operators need to cover (at least with high quality download speeds) when
large unpopulated areas are present. See section 2.4 above for details.
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over qmℓ. Specifically, for each unit of data downloaded, a consumer at location ℓ spends
(Bfmqmℓ)−1 seconds downloading. Integrating over consumers (or, equivalently, the cell’s
area, since consumers are uniformly distributed), the total time spent downloading is given
by ∫

ℓ∈L(Rfm)
1

Bfmqmℓ
dℓ, (13)

where L (Rfm) is the set of locations composing a hexagon with radius Rfm.

To determine average download speeds, we divide total data downloaded by total time spent
downloading. That is, we divide A (Rfm) by equation 13. This yields a harmonic mean of
qmℓ, multiplied by bandwidth:

Q̄fm (Rfm, Bfm) = BfmA (Rfm)∫
ℓ∈L(Rfm) q−1

mℓdℓ
. (14)

The above equation expresses channel capacity, capturing how feasible download speeds are
influenced by the firm’s choice of cell radius Rfm and its bandwidth Bfm. Importantly, channel
capacity is not the same as delivered download speed. Below, we will model how delivered
download speeds also depend on consumption (i.e., congestion) using queuing theory.

Next, we consider the individual download speed function qmℓ, which gives download speed
measured in bits per second (per Hertz of bandwidth):

qmℓ = γm log2 (1 + SINRℓ) , (15)

where SINRℓ is the signal-to-noise-and-interference ratio, which we will explain below, and
γm is a spectral efficiency parameter.

When the spectral efficiency parameter is set equal to unity (γm = 1), equation 15 represents
the Shannon-Hartley Theorem (Shannon, 1948), which provides the theoretical upper bound
on data transmission rates as a function of SINR. The Shannon-Hartley Theorem’s bound
is much higher than the data transmission rates typically achieved in practice. Actual rates
of data transmission are affected by the encoding technology, topography, weather, and the
presence of buildings and other physical barriers. Such factors vary by market, so we employ
a market-specific spectral efficiency parameter γm. We calculate these spectral efficiency
parameters to match our model’s predicted delivered download speeds with observed download
speeds. See Appendix A.2 for details.

This spectral efficiency parameter can absorb many aspects of the data transmission technol-
ogy, and in particular, anything that affects the level of download speeds without affecting
how they decline with distance. For instance, one might be concerned that our measure of
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spectrum includes all the frequencies owned by an operator, and therefore the frequencies
used for downloads as well as uploads by mobile customers, but we are using this measure of
bandwidth to model only download speeds. Operators could manage outgoing transmissions
(downloads) and incoming transmissions (uploads) by using half of their spectrum for each
(in practice, they use more sophisticated strategies). In this case, we could define Bfm as half
of the operated bandwidth, but given that channel capacity scales linearly with bandwidth,
setting γm = .5 would achieve the same effect. Avoiding interference between incoming and
outgoing signals is just one of many factors that tends to make γm < 1. Ultimately, we find
a mean value of γm equal to 0.165 across municipalities.

The signal-to-noise-and-interference ratio (SINR) is given by the ratio of signal power to the
sum of noise and interference power:

SINRℓ (Rfm) = Sℓ

N + Iℓ (Rfm) , (16)

where Sℓ is signal power density (signal power per unit of bandwidth), N is noise power
density, and Iℓ (Rfm) is interference density. Note that signal power Sℓ depends on location
due to path loss. Interference power Iℓ (Rfm) depends on both location and the cell’s radius
because cell size determines how far neighboring base stations are.

We assume that base stations transmit signals at the maximum power permitted by regulation.
As the signal travels away from the base station, its power diminishes (path loss). We take
this into account by using the Hata model of path loss (Hata, 1980), in which the signal
power received by a consumer depends on their distance from the base station. In a vacuum,
the signal power would be proportional to the squared inverse of the distance traveled. In
telecommunications jargon, this is a path loss exponent of two. In the Hata model we use, the
path loss exponent is 3.522, reflecting the fact that signal strength drops off more quickly as
it travels along the Earth’s surface than it would in a vacuum. See Appendix A.1.1 for the
precise functional form of Sℓ.

Noise power N is constant, and set equal to Johnson-Nyquist noise. Interference power Iℓ

is set equal to 30% of the signal power from the six adjacent cells. See Appendix A.1.2 for
details regarding the units and formulas for the noise and interference variables.

4.1.2 Queuing and Congestion

Consumers’ download requests do not arrive uniformly over time. This means that the channel
capacity Qfm derived above will not represent the actual delivered download speed in practice.

To derive a relationship between channel capacity and average delivered download speed,
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we follow Błaszczyszyn, Jovanovicy and Karray (2014) and Lhost, Pinto and Sibley (2015)
and assume that download requests arrive according to a Poisson process and that download
requests are served through a M/M/1 queue (a queuing system in which a single server serves
jobs on a first-come, first-served basis). Then, the average download speed, Qfm, will be

Qfm = Qfm − QD
fm, (17)

where QD
fm is the arrival rate of download requests among consumers served by the base

station.33 The data demand rate comes from the demand model and is provided explicitly in
equation 19 below. Each of the terms in equation 17 should be understood as rates, i.e., as
values measured in Megabits per second.

4.1.3 Economies of Scale

Our model allows for two sources of scale efficiencies: economies of pooling and economies of
density.

Economies of Pooling It has long been recognized in the economics literature that “there
are economies of scale in servicing a stochastic market” (Carlton, 1978).34 In operations
management, the same phenomenon has been referred to as the “Pooling Principle” (Cattani
and Schmidt, 2005). Thus, we use “economies of pooling” to describe economies of scale that
arise from consolidating bandwidth in the context of stochastic demand.

Mathematically, it is easy to see how economies of scale result from our queuing theory model.
Equation 17 holds that the average delivered download speed corresponds to the difference
between channel capacity and the download demand rate. Crucially, channel capacity (and
potential download speeds) scale linearly with bandwidth. If two identical firms combine their
bandwidth and customer bases (holding the data demand rate per customer fixed), then both

33To see this, suppose consumers submit data requests following a Poisson process with arrival rate λ. Each
data request has size d. Then, our overall data demand rate is QD = λd.

With channel capacity Q̄, the requests that can be processed per second (service rate) is Q̄/d. An M/M/1
queue with service rate Q̄/d and Poisson arrival rate λ will have a mean number of active users equal to λ

Q̄/d−λ
.

(see Taylor, Karlin and Taylor (1998), pp. 548-549 for a derivation). This mean number of users includes times
when the system is idle as well as when it is actively serving request.

Over time, the average rate of data transmission must be QD since throughput must equal demand. The
average download speed experienced by users is equal to this throughput, QD, divided by the mean number
of users, λ

Q̄/d−λ
:

QD
(
Q̄/d − λ

)
λ

= QD

(
Q̄

dλ
− 1
)

= QD

(
Q̄

QD
− 1
)

= Q̄ − QD,

where the first equality distributes 1/λ, the second substitutes QD = λd, and the third simplifies.
34Robinson (1958) was perhaps the first to describe this phenomenon, under the heading of “Economies of

Massed Reserves” (pp. 26-27). De Vany (1976) was an early application that used queuing theory to derive
economies of scale. Mulligan (1983) shows formally how economies of scale result from queuing theory.
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terms on the right-hand side of equation 17 would double. Consequently, delivered download
speeds (the left-hand side) would also double.

One way in which combining queues improves efficiency is by avoiding inefficient waiting.
For instance, in the context of grocery store customers queuing for checkout, having only
one queue for two cashiers avoids the possibility that a customer could be queued for a busy
cashier while the other cashier is idle.

Pooling has another advantage in the context of mobile telecommunications that relies on
the role spectrum plays in data transmission. Returning to the example of grocery store
checkout, combining queues may reduce idle registers and wait times, but it might not reduce
the time needed to serve a customer after reaching the front of the queue—i.e., there may be no
advantage to serving a customer with two cashiers and cash registers instead of one. However,
in the context of data transmission, using more spectrum does allow for faster downloads (as
if having two cashiers allowed customers to check out twice as fast).

While the queuing theory model we use is standard and relatively simple, it should be noted
that it has strong implications regarding the extent of economies of pooling. Taken literally,
our use of a single-server queue supposes that consumers are served on a first-come, first-
served basis, with all of the base station’s bandwidth being used by one customer at a time.
Since channel capacity represents the average speed at which a base station can transmit
data, when we increase channel capacity, we increase download speeds (at least for consumers
being served rather than waiting in the queue).35

In principle, it is possible to attain pooling efficiencies without consolidating firms through
active network sharing.36 In practice, there was very little active network sharing during
our study period, so we ignore this possibility for the purposes of our study. Active network
sharing undermines quality differentiation, as well as incentives to invest in quality, potentially
creating a free-riding problem. Thus, network sharing creates a trade-off between pooling
efficiencies and investment incentives that represents an important topic for future work.

Economies of Density Due to path loss, captured by the qmℓ function, the closer users are
to a base station, the more efficiently that station can serve them. Thus, if we increase the

35In practice, bandwidth is typically divided among multiple consumers, which might seem to call for a
queuing theory model where bandwidth is divided into separate servers (or carriers, to use wireless telecommu-
nications terminology). In such models, increases in operated bandwidth might not pass through to increases
in bandwidth used to serve individual customers, and increases in channel capacity would not necessarily lead
to proportional increases in download speeds. On the other hand, operators are able to assign large portions
of bandwidth to individual customers, a practice known as carrier aggregation, and it would be inefficient if
they never did so (e.g., when only one customer is downloading something within a cell at a given moment).

36Active network sharing, or radio access network (RAN) sharing, involves sharing the systems involved in
data transmission.
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density of users served by a firm while keeping constant the number of users per base station,
users will, on average be closer to the base stations serving them, improving download speeds.
Consequently, urban areas tend to be less costly to serve than rural areas (at a given quality
level). Mapping this to our analysis, having fewer firms implies that individual firms face
higher population densities. Consequently, at a given level of investment in terms of base
stations per customer, a market with fewer firms will have less path loss and higher download
speeds.

The economies of density can quantified by comparing the channel capacities arising from
two network operators to the channel capacity arising from one network operator that has
the same number of base stations as the two combined, but arranged into a hexagonal grid
with smaller cell sizes. If each of the two operators have a cell radius R, then the combined
operator would have a radius of R/

√
2. The combined firm enjoys higher channel capacity per

cell due to decreased path loss, but the degree of improvement is very sensitive to the baseline
cell radius. If the two-operator case has a radius of R = 1 km, then the single operator with
the same number of base stations has a channel capacity that is just 0.1% larger (per unit
of bandwidth operated). If R = 5 km, however, the combined operator would have a more
substantial improvement of channel capacity, 19.4%. In our infrastructure data, the effective
cell radii cover a range of values that includes both 1 km and 5 km (see Table 3), but they tend
to be much closer to 1 km. This foreshadows one message from our counterfactual results:
while economies of density can matter in principle, they have little impact for the typical cell
sizes in our data. We revisit this discussion in Appendix D.3, where we simulate equilibria
for different population densities.

Other studies of economies of density have focused on transportation costs (Holmes, 2011)
or associated waiting times (Rosaia, 2023). The economies of density in our study relate
to transmitting data with electromagnetic waves rather than transporting people or physical
goods. One difference is that data transmission costs increase with distance not because of
the time it takes, but because of the loss of signal quality. The economies of density that
result are largely similar, however.

Other Scale Economies While our model incorporates the above sources of economies of
scale, we note that there may be other sources of economies and diseconomies of scale. Perhaps
the most important omitted source of positive economies of scale comes from backhaul, or
the economies of scale in the physical telecommunications network that makes the traditional
telecommunications market a natural monopoly. But we also may be ignoring important
sources of diseconomies of scale, such as operational and managerial diseconomies of scale.

It should be noted that the engineering models we use necessarily imply scale efficiencies,
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and therefore there is no possibility that we would find that there are diseconomies of scale.
In other words, this paper does not ask the question “are there scale economies in mobile
telecommunications?” We take the scale efficiencies implied by engineering models for granted,
and our aim is to quantify to what extent scale efficiencies are realized in equilibrium and
how they trade-off with market power.

4.2 Simultaneity of Demand and Download Speeds

Our demand system describes how consumption depends on download speeds. The queu-
ing theory model above describes how download speeds depend on consumption. We now
consider how the engineering relationships described above come together with demand to si-
multaneously determine delivered download speeds, taking prices and infrastructure as given.
Formally, we now consider the determination of download speeds, data consumption, and
product market shares conditional on a vector of prices of mobile phone plans P and infras-
tructure variables (Rm, Bm), where Rm and Bm are the stacked cell radii and bandwidths of
the network operators.

In section 3.1, product market shares sjm and average data consumption x̄jm implicitly
depend on prices and download speeds. Here, we make this dependence explicit, writing
sjm (Qm, P) = sjm and x̄jm (Qm, P) = x̄jm.

The total demand for downloads on network operator f ’s network over a month can be broken
down into the product of three terms, which come from the demand component of our model:

Xfm (Qm, P) = popm

∑
j∈Jf

sjm (Qm, P) × x̄jm (Qm, P) , (18)

where popm is the number of potential consumers in the market.37

The demand rate for downloads on network operator f ’s network is the total downloads
serviced by operator f over a month, Xfm (·), distributed across time and across base stations.
This rate is given by:

QD
fm (Rfm, Qm, P) = Xfm (Qm, P)

H × Nfm (Rfm) , (19)

where H is the number of seconds in a month and Nfm (·) is the number of base stations
network operator f has in market m.38

37MVNOs use MNOs’ infrastructure for their own plans. Therefore, in our empirical analysis, we incorporate
the load that results from the plans offered by the MVNOs on the MNOs’ networks. ORG, BYG, and SFR all
allow MVNOs to use their infrastructure, and (lacking data on these relationships) we assume MVNO load is
distributed equally among these three MNOs.

38In our empirical application and counterfactuals, we use H = 31 × 17 × 3600. That is, we try to capture
download speeds during peak hours when most of the downloads occur, and we assume that days effectively
consist of seventeen peak hours. In our traffic data (from OSIRIS), consumption rates display remarkably
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Combining equations 14, 17, and 19, we have

∀f = 1, . . . , F : Qfm = Q̄fm (Rfm, Bfm) − QD
fm (Rfm, Qm, P) . (20)

Given prices and infrastructure variables, the vector of equilibrium download speeds Q∗
m is

defined as the vector of values of Qfm that solves equation 20. The download speed func-
tion Q∗

m (P, Rm, Bm) describes equilibrium download speeds given prices and infrastructure
variables.

4.3 Firm Competition

In this section, we present how firms choose prices and infrastructure to maximize profits. We
can understand the endogenous determination of download speeds in the previous section as
happening within each market m, with potentially different infrastructural variables in each
market, (Rm, Bm). However, prices are set nationally, so we will not introduce subscripts on
the price vectors.

Firms set prices and infrastructure simultaneously in all markets in a static game. We consider
the first-order conditions with respect to each competitive variable in turn.

4.3.1 Price Competition

Variable profits are given by(
Pf − cu

f

)
·
∑
m

popmS∗
fm (P, Rm, Bm) , (21)

where cu is the variable cost per customer, popm is the size of market m, and S∗
mf (·) denotes

the vector of product-level shares for phone plans offered by firm f in market m. This market
share function is derived from the demand system and our download speed model (equation
20) as follows:

S∗
fm (P, Rm, Bm) = sfm (Q∗

m (P, Rm, Bm) , P) ,

where the sfm (·) corresponds to the stacked vector of firm f ’s phone plan-level market shares
given by equation 7.

We assume that each firm chooses prices to maximize the variable profits expressed in equation
21. Note that equilibrium download speeds depend on price, so the first-order condition for

little variance during the waking hours of 8 a.m.–midnight, with between 4.7% and 6.3% of total consumption
happening each hour. From 1 a.m.–7 a.m., data consumption is much lower, with each hour accounting
for 0.6%-1.7% of daily consumption. Consumption is in-between these rates during the transition hours of
midnight–1 a.m. and 7 a.m.–8 a.m. Thus, it is a reasonable approximation to assume that there are 17
identical peak hours during which all consumption occurs.
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optimal price-setting must not only take into account the direct effect of lowering price on
consumer demand, but also the indirect effect of endogenous download speeds. The indirect
effect lowers price elasticities because as demand for firm f falls, its download speeds increase
due to reduced network load, which has a positive effect on demand and thereby dampens the
demand reduction. We discuss demand elasticities further in section 6.

4.3.2 Costs and Infrastructure Competition

Firms also decide on their infrastructural investments in each market, measured by Rfm.
Infrastructure costs in market m are given by the following function:

Cfm (Rfm, Bfm) = cs
fm

Am

A (Rfm)Bfm, (22)

where Am is the land area of market m, and cs
fm captures costs per base station and unit of

bandwidth (which may vary by network operator and by market), and A (R) = 3
√

3R2/2 is
the area of a hexagonal cell with radius R.

This cost function reflects the idea that the main costs associated with a base station are the
electricity costs, the cost of installing antennas, and other costs that are proportional to the
amount of bandwidth being operated. An advantage of this cost function is that, if we suppose
that all firms operate at the same base station locations, then redistributing bandwidth among
firms and/or changing the number of firms does not change the total costs incurred within
the industry. Thus, this cost function shuts down a potential source of economies of scale
associated with the duplication of fixed costs.39

This cost function also rules out any gains from passive network sharing. Because costs are
proportional to bandwidth, firms would not change their total costs by combining their net-
work resources at a given location. While our analysis does not explicitly incorporate passive
network sharing, this does not lead us to overstate the case for consolidation. That is, one
might worry that some of the predicted counterfactual efficiency gains from consolidation will
be overstated because those efficiency gains can be realized among firms without consolidat-
ing. Because this source of cost savings does not exist in our baseline model, this is not a
concern when interpreting our main counterfactuals.

That said, it is natural to think that there are some fixed costs associated with operating
a base station, such as rents or setup costs, which are independent of the bandwidth being
operated. To address this concern, we conduct robustness exercises with an alternative cost
function that treats all infrastructure costs as fixed costs per base station (that is, we drop the

39See Peha (2017) for an analysis of economies of scale in mobile services coming from fixed costs per base
station (without the economies of density and economies of pooling we consider).
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Bfm term from equation 22). Appendix D includes results for this alternative cost function.

We can define market-level profits as follows:

Πfm (P, Rm, Bm) = popm

(
Pf − cu

f

)
· S∗

fm (P, Rm, Bm) . (23)

Finally, we can define the national profit function (including infrastructure costs) for each
firm f :

Πf (P, R, B) =
∑
m

Πmf (P, Rm, Bm) −
∑
m

Cfm (Rfm, Bfm) . (24)

where R and B stack the infrastructure variables across markets.

Equation 24 defines the profit function for each firm, summing across all 589 markets. We
assume that each firm unilaterally and simultaneously chooses a (national) price vector Pf

and a vector of cell radii (a cell radius for each municipality) Rf to maximize their profits,
taking other firms’ price and infrastructure choices as given, yielding equilibrium prices P∗

and radii R∗.

4.4 Cost Estimation

Using our demand estimates and the industry model presented above, we infer firms’ costs
based on the assumption that firms set prices and invest in infrastructure to maximize profits.

We model operators as playing a static investment game. In reality, operators upgrade their
networks over time. Furthermore, the demand for mobile data services has grown rapidly,
accompanied by rapid technological innovations. Abstracting away from these dynamic fea-
tures, we aim to only capture the long-run trade-offs presented by investments in mobile
telecommunications infrastructure.

We argued in section 3.2.2 that our cross-sectional approach to demand can capture the
long-run trade-offs that consumers face. We estimate firms’ cost parameters by making the
marginal cost of improving infrastructure match the marginal revenue from improved infras-
tructure implied by the demand model. Thus, our cost model should be understood as a
long-run cost model, in the sense that it is the cost function that rationalizes the invest-
ments we see if they had been made in a one-time static game that permanently determines
infrastructure.

There are two types of cost parameters to be estimated: cu
j , the cost per user of phone plan

j, and cs
fm, the cost per base station per unit of bandwidth in market m for network operator

f .
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4.4.1 Costs per User

From equation 21, the first-order condition from the price setting game is

∑
m

popmS∗
mf (P, Rm, Bm) +

(∑
m

popmJf S∗
mf (P, Rm, Bm)

)(
Pf − cu

f

)
= 0, (25)

where Jf represents the Jacobian operator with respect to Pf .

Therefore, an estimate of per-user marginal costs is given by

ĉu
f = Pf +

(∑
m

popmJf S∗
mf (P, Rm, Bm)

)−1∑
m

popmS∗
mf (P, Rm, Bm) . (26)

4.4.2 Infrastructure Costs

Given the demand estimates and the model of how the infrastructure variables (R, B) map
to delivered quality, we can simulate how equilibrium revenues change as the infrastructure is
changed. Intuitively, we can measure the marginal revenue of infrastructure, and this allows
us to infer its marginal cost.

Formally, we use numerical differentiation to approximate the marginal operating income with
respect to cell radius for each market based on a 0.01 km change in cell radius:

MRR
fm (Rm, Bm) = Πfm (P, (Rfm + 0.01, R−f,m) , Bm) − Πfm (P, (Rfm − 0.01, R−f,m) , Bm)

0.02 .

(27)
Note that these profit functions are defined in terms of the equilibrium download speeds
that result from the infrastructural investment and prices. Thus, the above expressions for
marginal operating income should be understood as implicitly taking into account how quality
changes as infrastructural investment changes. Furthermore, note that profits Πfm include
per-user costs; hence our use of “operating income” rather than “revenue.”

Next, assuming that infrastructural investments are chosen to maximize profits, we can use
the marginal operating income above to recover the remaining cost function parameters.
Specifically, the marginal cost of increasing Rfm is obtained by differentiating the cost function
in equation 22. For each firm and municipality, our estimated cost parameter cs

fm sets this
marginal cost equal to the marginal operating income in equation 27.

35



Table 4: Demand Parameter Estimates

Estimates θ̂p0 θ̂pz θ̂v θ̂O θ̂d0 θ̂dz θ̂c σ̂
−1.859 −0.727 0.460 2.375 0.597 0.335 1.405e−4 0.683
(0.687) (0.221) (0.180) (0.272) (0.380) (0.039) (4.108e−5) (0.111)

Willingness to pay for 10th %ile 30th %ile 50th %ile 70th %ile 90th %ile
1 GB plan → 4 GB plan 2.73 AC 3.16 AC 3.52 AC 3.95 AC 4.77 AC
unlimited voice 3.81 AC 5.53 AC 7.44 AC 10.43 AC 20.19 AC
10 Mbps → 20 Mbps 1.90 AC 2.39 AC 2.84 AC 3.41 AC 4.68 AC

Note: Rather than estimating θc and σ directly, we estimate log (θc) and log
(

σ
1−σ

)
since θc > 0 and 0 < σ < 1,

respectively. We derive the associated standard errors using the Delta Method. The estimates for θc are in
scientific notation. Measures of willingness to pay implied by the demand parameter estimates are provided
in the lower section. Willingness to pay for upgrading from a 1 GB phone plan to a 4 GB one is calculated
holding download speeds fixed at the median speed observed in the data. Willingness to pay for upgrading
from a download speed of 10 Mbps to 20 Mbps is calculated for a 10 GB phone plan.

5 Results

5.1 Demand Estimates

Demand parameter estimates are presented in Table 4. Price sensitivity is decreasing in
income. Meanwhile, the data utility parameter (θdi) is increasing in income, which implies an
inverse relationship between income and the value of data consumption (since the mean of ϑi

is 1/θdi), suggesting a higher opportunity cost of time spent downloading for higher income
individuals. To help interpret the parameter estimates, Table 4 converts these estimates
into willingness to pay for certain phone plan characteristics across income percentiles. Our
estimates suggest that higher income consumers are willing to pay considerably more for
phone plans with larger data limits, unlimited voice minutes, and faster download speeds
than lower income consumers. These high-income consumers are willing to pay more despite
an inverse relationship between income and the value of data consumption since they are less
price sensitive.

Figure 6 examines how well our model predicts actual data consumption by plotting predicted
and actual average data consumption across markets for three Orange phone plans with
different data limits. Our estimated model accurately predicts the average level for each
data limit category. This result is non-trivial, for the fraction of the data limit used varies
across categories, and our model does not include parameters that allow us to directly fit this
usage level by category. Instead, to generate different consumption levels by plan, we must
have heterogeneity in preferences that maps to heterogeneity in bliss points, with consumers
self-selecting into plans based on these bliss points and their price responsiveness.
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Figure 6: Predicted vs. Actual Average Data Consumption
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Note: This figure presents a scatter plot at the market-level of actual average data consumption versus the
consumption predicted by our demand parameter estimates for three Orange phone plans. The dashed line is
a 45-degree line.

Table 5: Cost Estimates

Per-user costs d̄ < 1 000 1 000 ≤ d̄ < 5 000 d̄ ≥ 5 000
ĉu

j (in AC) (in AC) (in AC)
4.95 10.33 20.53

(0.65) (0.66) (2.02)

Per-base station costs Orange SFR Free Bouygues
Ĉf (in AC) (in AC) (in AC) (in AC)

182 197 140 556 142 792 201 733
(60 698) (40 035) (46 587) (67 896)

Note: Per-user cost values represent the average estimated cost per user, calculated across all products within
the data limit range specified in the corresponding column. Values in parentheses are the average standard
errors. Per-base station costs are in long-run per base station terms (rather than monthly per base station-units
of bandwidth terms, as introduced in the text). To create long-term per base station costs, we first use the
monthly per base station-units of bandwidth costs that we recover from our estimates and multiply them by
75. This corresponds to the estimated monthly cost of a base station operating 75 MHz of bandwidth, which
corresponds to the average amount of bandwidth per firm across markets. To recover the cost of long-lived
base stations from our estimates based on monthly profits, we assume a monthly discount rate of 0.5%. The
above results are therefore 201 times the per-base station costs we recover. Values in parentheses are standard
deviations of the distribution of estimated costs across markets (not standard errors of the estimates).

5.2 Cost Estimates

Table 5 reports per-user and per-base station cost estimates. These estimates are recovered
by inverting prices and radii, as described in section 4.4. Estimated per-user costs increase
considerably with the size of the data limit: small data limit plans (those with data limits
less than 1 000 MB) have an average per-user cost of 4.95 AC, medium-sized data limit plans

37



(between 1 000 and 5 000 MB) have an average of 10.33 AC, and large data limit plans (over
5 000 MB) have an average of 20.53 AC.

Estimates of the average sunk cost of a 75 MHz base station are between 140 000 AC and
about 200 000 AC, depending on the firm. As described in the table’s notes, we converted from
monthly costs to one-time sunk costs by assuming a 0.5% monthly discount rate. Using this
conversion of our estimates, we can compare these costs to industry estimates. Our estimates
fit squarely within the range of estimates of the costs of constructing large base stations,
generally between 50 000 AC and 250 000 AC (Nikolikj and Janevski, 2014; Analysys Mason,
2015; Smail and Weijia, 2017). Note that per-base station costs do vary across markets. For
instance, the estimated standard deviation in the cost per base station across markets for
Orange is 61 000 AC, reflecting differences in land acquisition costs, labor costs, and other
factors.

6 Counterfactual Simulations

Our framework can address questions of market structure, where market structure is defined
by a vector that describes the number of firms and how much spectrum is allocated to each.
In section 6.1, we consider the trade-off between market power and scale economies, investi-
gate the optimal number of firms, and consider how to allocate spectrum among firms. Then,
in section 6.2, we investigate the marginal value of spectrum allocated to mobile telecom-
munications and find that the marginal contribution to consumer surplus far exceeds firms’
willingness to pay. In section 6.3 we simulate mergers between MNOs in France, focusing on
the short-run where infrastructure is held fixed.

In all of our counterfactual simulations, we take market structure as exogenous. This may
seem at odds with the fact that spectrum allocations are endogenously determined through
auctions. However, the recent literature has expressed increasing concerns about whether
spectrum auctions lead to efficient post-auction outcomes, especially given that achieving
efficiency in a spectrum auction is not as simple as achieving an efficient allocation of resources
among auction participants; the regulator also cares about outcomes for consumers, not just
the bidding firms.40

Economists have considered how to design auctions that take into account post-auction market
structure (Cramton et al., 2011; Rey and Salant, 2017). Our framework can complement this

40For instance, Jehiel et al. (2003) argue that features of multi-unit auction design that lead to more efficient
allocation among auction participants can exacerbate post-auction market structure concerns. Eső, Nocke and
White (2010) point out that increasing capacity, when capacity is efficiently allocated from the perspective
of firms, can actually lead to a reduction in consumer welfare. Ershov and Salant (2022) present empirical
evidence that some spectrum auctions have adverse impacts on market structure.
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paradigm; the outcome of a spectrum auction is a market structure, and our framework
provides an understanding of how market structure maps to equilibrium outcomes of concern
to regulators, such as prices, download speeds, and welfare.

6.1 Market Power, Scale Efficiencies, and Bandwidth Allocations

In this section, we solve for equilibria using a representative commune in which each firm offers
two mobile phone plans: one with a moderately low data limit of 1 GB and one with a very high
data limit (in 2015) of 10 GB, which is the largest of the representative contracts. Focusing
on a representative commune allows us to avoid solving for equilibrium investment levels in all
markets, which would be computationally impractical because, with national prices, optimal
prices and investment levels are interdependent across markets. The representative commune
that we construct has a population density equal to the population-weighted mean population
density in France (2 792 people / km2).41 Furthermore, this representative commune has
an income distribution matching the overall income distribution in our sample, available
bandwidth equal to the population-weighted mean of the sum of frequencies operated in
each market, a spectral efficiency parameter equal to the population-weighted mean, and
base station cost parameters equal to the mean across markets and operators, weighted by
population.42 Both phone plans have an unlimited voice allowance, demand shocks equal to
the average of those estimated for the Orange phone plans (θ̂O), and per-user costs equal to
the average of the estimated per-user costs for similar phone plans (those with d̄j < 5 GB for
the low data limit plan and those with d̄j ≥ 5 GB for the high data limit one).43

One might worry about whether the focus on a representative commune yields results that
hold for France when considered as a whole. In particular, does the representative commune,
with its moderate population density, yield the same optimal number of firms that we would
find for France, which comprises a mixture of high and low population-density areas? In
Appendix D.3, we find that the optimal number of firms is basically invariant to population
density. The optimal number of firms for the representative commune is also optimal for high-
and low-density areas, and, consequently, for France as a whole.

41Equivalently, this is the mean population density integrating over people, or the contraharmonic popu-
lation density integrating over space. We focus on the population density experienced by people because the
raw population densities (population density divided by land area) of countries like the US or France are much
lower than what most residents experience, and mobile network operators typically invest less intensively in
sparsely-populated areas. Raw population densities are therefore not representative.

42For these results we use the cost specification presented in section 4.3.2. Appendix D.1 presents our
counterfactual results under an alternative specification in which base station costs do not scale with bandwidth.
While some counterfactual exercises look very similar, this specification does favor more consolidation; however,
we believe that these gains are substantially overstated, as discussed in the appendix section.

43Equilibrium multiplicity is a potential concern. To address this issue, we employ a wide range of starting
values when searching numerically for an equilibrium. While our algorithm does not always converge, when it
does converge, it always converges to the same equilibrium. This is the case even for the asymmetric equilibria
of section 6.1.2.
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6.1.1 Optimal Number of Firms

In this section, we explore the trade-off between market power and economies of scale by
considering the optimal number of firms in a static equilibrium. Fewer firms grants each
firm more market power but also results in a higher density of consumers (lowering average
path loss) and more pooling of consumers (improving the allocation of network resources).
Given the gradual nature of network deployment in the industry, this exercise cannot hope to
capture the short-run impacts of a potential merger; instead, we aim to capture the long-run
trade-offs associated with consolidation. In section 6.3 we explore the short-run impacts of
mergers between MNOs in France.

The optimal number of firms depends on how equilibrium prices, investment, and download
speeds vary based on the number of firms. Figure 7 displays these endogenous variables
for symmetric equilibria with between one and six firms. Total bandwidth available to the
industry is divided equally among the firms, which optimally set prices and investment levels.
That is, each firm owns and operates spectrum Bfm = B0/n, where B0 is the total bandwidth
available to the industry, and n is the number of firms.

In this exercise we focus on symmetric equilibria involving firms with identical spectrum
endowments. When evaluating the optimal number of firms, one reason for our focus on
symmetric spectrum holdings is that asymmetric spectrum allocations can be inefficient (Peha,
2017). In section 6.1.2, we consider asymmetric bandwidth allocations.

Figure 7: Counterfactual Prices and Qualities
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Equilibrium prices are declining in the number of firms but remain well above per-user
marginal costs, which are 8.18 AC and 20.53 AC for the low and high data limit plans, re-
spectively. Prices determine to which plan consumers subscribe and therefore the amount
of data consumed. As a firm lowers its price, it attracts more customers, causing the load
on its network to increase, lowering download speeds. Lower download speeds dampen the
appeal of the lowered price. The relevant elasticity for the purpose of setting optimal prices,
therefore, involves a full derivative that takes into account this indirect effect of changing
prices on download speeds. Figure 8 displays how this indirect effect from download speeds
influences optimal price-setting behavior by displaying two elasticities: partial price elastici-
ties and full price elasticities. Partial price elasticities are the price elasticities that hold the
quality of service fixed, evaluated at equilibrium prices. Full price elasticities, on the other
hand, allow the quality of service to adjust with the price. Note that the full price elasticities
decline less with the number of firms than the partial elasticities. This divergence stems from
the intensification of the indirect quality effect as the number of firms grows. When there
are many firms, a firm’s own capacity is small relative to the number of consumers that it
can potentially attract from other firms. This causes the quality of service to degrade more
sharply for a given price reduction.

Figure 8: Full and Partial Price Elasticities
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Note: This figure shows price elasticities for the two types of phone plans. Partial elasticities are derivatives
in which download speeds are held fixed. Full elasticities take into account how download speeds change
endogenously as prices change. Price elasticities are evaluated at the equilibrium prices and quantities.

Our cost specification holds that the cost per firm per base station, cs
fmBfm, is proportional to

a firm’s bandwidth allocation. As we assume that a firm’s bandwidth allocation is inversely
proportional to the number of firms, the cost per base station in these counterfactuals is
cs

fmB0/n. Then, in a symmetric equilibrium in which each firm builds Nfm base stations,
the industry-wide expenditure on infrastructure is Nfmcs

fmB0. Therefore, the number of base
stations per firm—the third panel of Figure 7—is proportional to total industry expenditure
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on infrastructure.

Investment patterns display a non-monotonic relationship in the number of firms. Moving
from monopoly to duopoly, the number of base stations for each firm increases (alternatively,
the cell radius decreases). Increasing the number of firms beyond two, however, decreases
investment per firm: for each increase in the number of firms, each firm builds fewer base
stations (increasing the cell radius).

Despite this non-monotonicity in investment, download speeds are always decreasing in the
number of firms. Demonstrating economies of scale, download speeds are higher under a
monopoly than a duopoly, even though a monopolist deploys fewer base stations.

Closer inspection reveals that these economies of scale are driven largely by economies of
pooling, rather than economies of density. Path loss will reduce channel capacity per unit of
bandwidth, and when firms invest in more base stations, those base stations will serve closer
customers, reducing path loss. As expected, channel capacity per unit of bandwidth follows
the same shape as the number of base stations per firm, but note the scale of the graph for
channel capacity per unit of bandwidth; the differences are trivial. In other words, firms are
not seeing significant gains in data transmission by avoiding path loss.

In contrast, economies of pooling have a large impact. We see that channel capacity is
roughly inversely proportional to the number of firms, which is driven by channel capacity’s
proportionality to bandwidth operated (see equation 14 and the fact that total available
bandwidth is being spread across the firms, i.e., Bfm = B0/n).

With both prices and quality declining in the number of firms, the optimal number depends on
the trade-off between price and quality. Figure 9 considers welfare compared to the monopoly
case as the number of firms varies. We find that the optimal number of firms is four in
terms of total surplus, and eight in terms of consumer surplus, which is currently the relevant
barometer for antitrust policy. We present here consumer surplus calculated without including
the logit error terms (εij). This means that our consumer surplus results reflect differences in
prices and download speeds rather than being mechanically driven by the number of firms.

However, as figure 10 illustrates, consumers do not agree on the optimal number of firms.
We plot welfare for various income deciles against the number of firms for our preferred
specification. While consumer surplus is increasing in the number of firms for most consumers
(up to eight or nine firms), the optimal number of firms for high-income consumers is five.
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Figure 9: Counterfactual Welfare
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Note: This figure displays measures of welfare as a function of the number of firms. Welfare is measured in
euros per capita relative to the monopoly case, so for each plot the welfare value at 1 firm is 0. Dashed vertical
lines indicate the number of firms that maximizes that measure of welfare.

Figure 10: Counterfactual Welfare by Income Level
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Note: Welfare is measured in euros per capita relative to the case of monopoly. Dashed vertical lines indicate
the number of firms that maximizes that measure of welfare.

6.1.2 Asymmetric Spectrum Allocations

How should spectrum be allocated within the industry, and what is the impact of asymme-
tries in this allocation? The previous exercise of determining the optimal number of firms
considered the case in which firms are symmetric. In practice, MNOs tend to differ in terms
of their plan offerings, costs, and spectrum allocations. We consider in this subsection the
impact that an asymmetric bandwidth allocation has on equilibrium outcomes and welfare.
In section 6.3 we conduct a merger simulation in which we allow for asymmetries in these
other dimensions based on the asymmetries observed in France.

Here, we consider a three-firm equilibrium with the same setup as in section 6.1.1 but with
asymmetric bandwidth allocations. Specifically, rather than allocating one-third of the total
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bandwidth to each of the three firms as in the previous exercise, we allocate half of the band-
width to one firm and one-quarter each to the other two firms. This allocation is equivalent
to the one that would result from two firms in the symmetric four-firm case merging their
spectrum holdings.

Table 6: Three-firm Equilibria under Different Spectrum Allocations

firm’s 1 000 MB plan 10 000 MB plan download
bandwidth price (in AC) price (in AC) speed (in Mbps)

symmetric allocation
equal allocation firm 1

3B 15.377 (1.010) 30.222 (2.120) 12.589 (0.317)

asymmetric allocation
large allocation firm 1

2B 15.498 (1.059) 30.313 (2.149) 15.473 (0.491)
small allocation firm 1

4B 15.319 (0.984) 30.187 (2.103) 10.949 (0.237)

∆ CS ∆ PS ∆ TS
(in AC/person) (in AC/person) (in AC/person)

symmetric allocation −0.668 (0.154) 0.614 (0.118) −0.054 (0.044)
asymmetric allocation −0.701 (0.161) 0.625 (0.122) −0.076 (0.047)
difference 0.032 (0.007) −0.010 (0.003) 0.022 (0.004)

Note: Rows correspond to firms’ phone plan characteristics under either a symmetric spectrum allocation or
an asymmetric one (for which there are two types of firms—one with 1

2 of the total bandwidth and two with
1
4 of the total bandwidth). The second set of results presents the surplus relative to the four-firm symmetric
case. The final row presents the difference between the symmetric and asymmetric values.

In line with Peha (2017), our results suggest that asymmetric spectrum allocations are ineffi-
cient. Table 6 presents equilibrium prices, download speeds, and welfare under the symmetric
and asymmetric allocations. Unsurprisingly, for the firm with more spectrum, download
speeds in the asymmetric allocation case are faster than in the symmetric case, and the re-
verse is true for the firms with low spectrum holdings. Reflecting these differences in download
speeds, compared to the symmetric case, phone plan prices are higher for the firm with more
bandwidth and lower for those with less. While heterogeneity in plan characteristics may
be beneficial with consumer heterogeneity (e.g., more price-sensitive consumers can benefit
from lower prices at the cost of slower download speeds), we find that both consumer and
total surplus are lower under the asymmetric allocation than the symmetric one (producers,
meanwhile, benefit in the aggregate from the asymmetric allocation).

6.2 Value of Spectrum to the Industry

Regulators such as the FCC in the US and ARCEP and ANFR in France are tasked with
bandwidth allocation. This involves determining which industries (and firms) are allowed to
operate which frequencies of electromagnetic spectrum and for what purposes. It is therefore
crucial for such agencies to understand how allocating bandwidth to mobile telecommunica-
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tions affects social welfare. For a regulator to allocate the optimal amount of spectrum to
mobile telecommunications, they must understand both the marginal social value of spec-
trum in mobile telecommunications and its opportunity cost (the marginal value for other
purposes). Our model provides quantification of the value of spectrum in this industry; quan-
tifying its opportunity cost calls for a model of other industries and is beyond the scope of
this paper.

In this section, we quantify how allocating more bandwidth to the telecommunications indus-
try affects firm profits, consumer welfare, and total surplus. When a firm receives a larger
bandwidth allocation—holding prices and infrastructure fixed—its download speeds increase
and it gains market share. The derivative

dΠf (R∗ (Bf , B−f ) , (Bf , B−f ))
dBf

(28)

captures how a firm’s profit changes when just that firm receives a larger bandwidth allocation,
taking into account how equilibrium investment and prices respond. This value captures an
individual firm’s willingness to pay for more bandwidth at the margin. The derivative

dΠf

(
R∗ (Bf , Bf ′ , B−f,f ′

)
,
(
Bf , Bf ′ , B−f,f ′

))
dBf ′

(29)

captures the impact of this increase in allocated bandwidth on other firms’ profits.44

In a simple spectrum auction, the firms’ bids will be related to the difference between these
two expressions. A firm’s bid reflects its own gain in profits from the increased bandwidth
should it win the auction relative to losing the auction and the spectrum being allocated to
another firm.

A regulator’s decision of whether to allocate spectrum to mobile telecommunications should
be based not on the firms’ bids, however, but on the marginal social value of allocating
the bandwidth to the industry (compared to the marginal social value of allocating it to
other industries and purposes). This marginal social value is captured by the following two
derivatives. The first derivative,

dΠf (R∗ (B1) , B1)
dB

, (30)

captures how the equilibrium profit of an individual firm changes when all firms are allocated
44We are assuming, as in section 6.1.1, that firms are symmetric (prior to changing bandwidth allocations),

so the identity of f ′ does not matter so long as f ′ ̸= f .
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more bandwidth. The second derivative,

dCS (R∗ (B1) , B1)
dB

, (31)

captures how consumer surplus changes as all firms are allocated more bandwidth.

Our framework and estimates allow us to calculate each of these values. This allows us to not
only calculate the marginal social value of allocating more bandwidth to the industry, but
also to compare that value to the difference between expressions 28 and 29. Since spectrum
auctions provide a signal of the marginal willingness to pay for spectrum (rather than it being
allocated to a rival), this comparison sheds light on the similarity between that willingness
to pay abd the social value relevant to a regulator allocating spectrum across industries and
uses.

Figure 11: Bandwidth Derivatives
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Note: Derivatives are evaluated at the symmetric equilibrium values. Values are rates per month. The
derivative of own profits with respect to another firm’s bandwidth (dΠf /dBf ′ ) is undefined in the monopoly
case. In the first subplot, therefore, what is reported in the case of only one firm is simply the derivative of
own profits with respect to own bandwidth (dΠf /dBf ). Dashed lines represent 95% confidence intervals.

We compute the marginal value of spectrum based on symmetric equilibria as in section 6.1.1
As Figure 11 shows, with four firms, the firm’s willingness to pay for additional bandwidth (the
left panel) is about five times less than what a unit of bandwidth allocated to the industry
would add to consumer surplus (the right panel). This reflects the importance of using a
structural model such as ours to quantify the social value of bandwidth. While auctions may
allow us to observe signals of operators’ willingness to pay for spectrum, such measures may
be far lower than the social value of spectrum.45

45Of course, a regulator seeking to maximize total surplus would also need to consider the middle panel,
but these values are small relative to the right one since firms compete away the surplus from additional
bandwidth, so the point that the value of additional bandwidth is many times larger than that captured by
spectrum auctions still stands.
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In late 2015, the same time as our analysis, France auctioned off 60 MHz of spectrum (20-
year licenses) in the 700 MHz band that was previously used by television broadcasters. The
auction raised 2.8 billion euros, which, dividing by France’s population at the time (66.55
million), results in 0.70 AC/person/MHz. At four symmetric firms, we find that a firm’s profits
are increased by 0.00127 AC/person/MHz/month. At a 0.5% monthly discount rate, this yields
a willingness to pay for spectrum of 0.25 AC/person/MHz. While this suggests that our value
for a firm’s willingness to pay is on the low end, it may be that firms’ bids reflect an expectation
that spectrum’s value will grow over time. Once again using a 0.5% monthly discount rate
again, the marginal consumer surplus from an additional unit of spectrum in a four-firm
equilibrium is 1.24 AC/person/MHz. Therefore, whether we consider firms’ willingness to pay
as implied by the model, or as implied by the bids in the 2015 auction, the marginal social
value of spectrum exceeds what firms are willing to pay.

6.3 Short-Run Merger Analysis

Our comparative statics with respect to the number of firms in section 6.1 should be inter-
preted with caution when extrapolating to merger analysis. Because those counterfactuals
involve static equilibria, they certainly cannot capture the short-run impacts, for infrastruc-
ture cannot be rearranged instantaneously and costlessly in response to a change in market
structure. Moreover, since firms have asymmetric bandwidth allocations and offered plans,
mergers between these firms will also lead to asymmetries across these variables.

In this section, we consider the impact of mergers between two MNOs in the short-run. We
allow ownership structures and the prices they imply to change; however, we keep product
sets and infrastructure fixed. Presumably, prices and the response from consumers can change
more quickly than investments in base stations or plan offerings. We model a merger between
two MNOs f and f ′ as the merged MNO, f̃ , offering plans Jf̃ = Jf ∪ Jf ′ , (with each product
maintaining the same ξjm and cu).46

MNOs frequently co-locate base stations. Following a merger base station locations are fixed
in the short-run. If the two merging firms had base stations in the same location, the merged
firm’s base station would be no closer to the customers it serves (resulting in no economies
of density). We therefore use as the number of base stations of the merged firm, Nf̃m, the
number of separately located base stations of the two firms. If we observe in the data that
both MNO f and f ′ have a base station in the same location, we only count that location
once, so max

{
Nfm, Nf ′m

}
≤ Nf̃m ≤ Nfm + Nf ′m.

46These mergers result in highly asymmetric firms. Over time, operators will re-optimize their networks,
plan offerings, and bandwidth holdings. Assessing whether such adjustments maintain or reduce asymmetries
requires a dynamic model, and potentially a model that endogenizes bandwidth holdings, which we leave for
future work.
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The merged firm has access to the bandwidth holdings of the two pre-merger firms, resulting
in economies of pooling. We use for the merged firm’s bandwidth an upper bound on its
effective bandwidth: the sum of the two merged MNOs’ allocations (Bf̃m = Bfm + Bf ′m). In
the short-run, not every base station may be able to utilize the merged firms’ full bandwidth
allocation. While a base station created by merging two stations that were at the same
location may be able to use the full merged bandwidth allocation, a base station at a location
previously operated by only one of the original MNOs would need additional investment to
operate the combined bandwidth. This means that Bf̃m likely overstates the bandwidth that
can be used by the merged MNO in the short-run, leading to faster predicted download speeds,
which increase consumer surplus. This analysis will therefore tend to overstate post-merger
efficiencies; however, as a preview of our findings, we find that all mergers between MNOs
imply a short-run decrease in consumer surplus.

The synergies implied by a merger depend on the two pre-merger MNOs’ bandwidth allo-
cations and the degree of co-location of their base stations in the market. These variables
can vary from market-to-market, so rather than using a single representative market (as in
the exercises in section 6.1), we use multiple markets to capture this heterogeneity across
France. Using all markets in France would be computationally infeasible,47 so we use several
representative markets corresponding to population categories and weight those markets in
firms’ profits by the fraction of France’s population that those categories represent.48

Despite efficiencies from merging infrastructure, we find that all possible mergers between
two MNOs would decrease consumer surplus. Figure 12 presents the implied bandwidth and
radius of the merged MNOs as well as the impact on consumer surplus for each merger. All
mergers decrease consumer surplus, with reductions ranging in size from a minimum of 0.22
AC/person/month (Orange and Bouygues) to a maximum of 1.24 AC/person/month (Orange
and SFR).49

47Solving for the firms’ equilibrium prices requires solving for the equilibrium download speeds (equation
20) for every candidate vector of prices.

48Specifically, we use three population categories: <35 000, 35 000–100 000, and ≥100 000, which respectively
correspond to 32.03%, 29.56%, and 38.41% of the population of France in our sample markets (and are used
as the weights the markets receive in the firms’ profit functions). Within each category, we choose a market
based on which one has the most similar estimated base station costs (ĉs

fm) to the population-weighted average
within the category (based on the sum of the squared differences). The municipalities we use are therefore
Muret, Épinay-sur-Seine, and Amiens.

49For comparison, in section 6.1.2 we found that consumer surplus is 0.67 AC/person/month lower in the three-
firm asymmetric bandwidth allocation equilibrium than in the four-firm symmetric allocation equilibrium. This
allocation would result from a merger in spectrum allocations between two firms in the four-firm symmetric
case, similar to the merger exercise in this section (though the exercises differ in a few other dimensions,
including that the exercise in 6.1.2 captures long-run equilibrium investment).
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Figure 12: Short-Run Counterfactual Consumer Surplus under Mergers
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Note: For each subplot, the four original MNOs are displayed along the x- and y-axes. A point corresponds to
the merger of the MNOs along the x- and y-axes, and the diagonal corresponds to no merger. The bandwidths
and radii of the merged and non-merged MNOs are provided in the first and second subplots, respectively.
Values along the diagonal are population-weighted averages of the bandwidth or radius of the MNO. Off-
diagonal values are the population-weighted averages of the bandwidth or radius of the merged MNO (while
for non-merged firms in that merger scenario, the values remain the same as the ones for those MNOs along
the diagonal). The third subplot depicts the change in consumer surplus (relative to the no-merger case) for
the different merger scenarios.

7 Conclusion

The regulation of the mobile telecommunications industry, encomparssing antitrust policy and
spectrum allocation, calls for an understanding of scale efficiencies as well as market power.
Our approach has been an interdisciplinary one, drawing from tools in empirical industrial
organization to understand market power, and from wireless engineering to understand scale
efficiencies. Our framework allows us to quantify the relationship between market structure—
defined as the number of firms and the spectrum allocation among them—and equilibrium
outcomes such as prices, download speeds, and welfare.
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A Technical Appendix (for online publication)

A.1 Data Transmission Details

A.1.1 Signal Power

Equation 33 in section 4.1 provides the formula we use for signal power. It is based on the
Hata model of path loss (Hata, 1980). We use the Hata model for urban environments since
we focus our analysis on urbanized areas. This model provides us with the following formula
for path loss:

L (r) = 68.75 + 27.72 log10 (f) − 13.82 log10 (h) + (44.9 − 6.55 log10 (h)) log10 (r) , (32)

where L (r) is in decibels, r is the distance from the antenna (in km), h is the height of the
base station antenna (in m), and f is the frequency (in MHz).50

The specific values in our path loss equation can be derived as follows. We assume a base
station height of 30 m and a signal frequency of 1900 MHz, which is approximately the median
operated frequency in France in 2015. These values yield

L (r) = 139.2232 + 35.2249 log10 (r) .

The signal power in dBm at a distance r from the antenna is

A − L(r),

where A is the transmitted power. We assume a signal power of 61 dBm (or 1259 W) per 5
MHz of bandwidth at the base station, which corresponds to the regulated limit on effective
isotropic radiated power for the 2600 band (ARCEP, 2011a); similar limits apply for lower
frequencies (ARCEP, 2011b).

Converting the units to watts, this yields the following formula for signal power, in W per 5
MHz of bandwidth:

Sℓ = S (rℓ) = exp (−24.92) r−3.522
ℓ , (33)

50In the Sprint/T-Mobile merger, heterogeneity in the merging parties’ spectrum holdings played an impor-
tant role in the claimed efficiency gains. T-Mobile had substantial holdings of low-frequency spectrum, and
Sprint owned only high-frequency spectrum (Asker and Katz, 2022). Notice that frequency f enters positively
into equation 32, meaning that the signal power of high-frequency spectrum will be lower, and its signal power
level will approach the levels of noise and interference power at shorter distances. It would be a straightforward
extension to our model to capture this heterogeneity in spectrum holdings using equation 32 and integrating
over the appropriate set of frequencies for each firm. Such a model could capture how a firm holding only
low-frequency spectrum would experience higher costs of service, especially in areas of low population density.
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where rℓ is location ℓ’s distance from the base station. These values yield a path loss exponent
of 3.522. Most engineering studies use a path loss exponent between 3.5 and 4.51 In contrast,
signal strength in a vacuum would have a path loss exponent of 2, but signals decay more
quickly on the Earth’s surface.

A.1.2 Noise and Interference

Noise power N is set equal to Johnson-Nyquist noise, −107.01 dBm per 5 MHz of band-
width. Note that our expression for signal strength in equation 33 yields approximately
exp (−24.92) = 1.5e−11W signal power density at a distance of 1 km from the base station.
The noise power density is 10(−107.01/10)/1000 ≈ 2e−14W. Thus, signal power is orders of
magnitude larger than noise power at such distances from a base station.

Interference power is set equal to 30% of the signal power from the six adjacent cells. The
30% number follows Błaszczyszyn, Jovanovicy and Karray (2014) and reflects the fact that
adjacent cells are not always be in use, and modern systems use directional signals to limit
interference. To illustrate its magnitude, note that the edge of a 1 km cell, at the midpoint
between the serving base station and an adjacent identical cell’s base station, we would have
1.5e−11W of signal power (per 5 MHz) from the cell being used, and 0.3 · 1.5e−11W of
interference power from the immediately adjacent cell’s base station. Ignoring interference
from other neighboring cells, this would lead to a SINR ratio of approximately 0.3−1, the ratio
of signal to interference. At these signal levels, interference dominates the denominator, and
noise power plays little role.

Ultimately, the way we calculate interference power (at each point within a cell) is to sum
interference from the neighboring six cells, pictured in Figure 13. For a given point in the
center cell, we compute the distances between that point and the centroids of the adjacent
cells, which is the location of the antennas corresponding to each cell.

Let L be the locations of the centroids of the six adjacent hexagons to a hexagon centered
at the origin of a Euclidean plane, when all seven hexagons are regular with a (maximum)
radius of unity. That is,

L ≡
{(

0,
√

3
)
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3
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3
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These points correspond to the locations of the adjacent base stations pictured in Figure
13. Let d (ℓ, ℓ′) represent the Euclidean distance between two points ℓ and ℓ′. Ultimately,

51For instance, Błaszczyszyn, Jovanovicy and Karray (2014) assume a path loss exponent of 3.8.
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Figure 13: A Hexagonal Cell and its Six Adjacent Cells

Note: The figure depicts the distance between an individual at a random location in the center cell and the
base stations that correspond to the six adjacent cells. In determining the channel capacity of the cell, we
integrate over the entire area of the center cell, taking into account this interference at each point.

interference power is calculated as follows:

Iℓ (Rfm) = 0.3
∑
ℓ′∈L

S
(
Rfmd

(
ℓ, ℓ′)) , (34)

where the signal power function S (·) is defined in equation 33 above. In other words, inter-
ference power is 30% of the summed signal powers from the adjacent six hexagons.

To calculate channel capacity (equation 14), we need to integrate signal power Sℓ and interfer-
ence power Iℓ (Rfm) over the locations ℓ within a hexagonal cell. To perform this integration,
it suffices to focus on one of the twelve right triangles that compose the hexagon and then
multiply by twelve (each of the twelve triangles has the same distribution of interference).
Specifically, we integrate over the shaded triangle in Figure 13:

Q̄fm (Rfm, Bfm) = γmBfmA (Rfm)

12
∫ √

3
2 Rfm

0

∫ y√
3

0

1

log2

(
1 + S(x,y)

N+I(x,y)(Rfm)

)dxdy


−1

.

(35)

A.2 Spectral Efficiency Calibration

We calibrate the spectral efficiency parameter γm using delivered download speed data for
each municipality. This is done by solving for the value of γm that makes equation 20 hold
for Orange (we do not have usage data for other operators). In this calibration, the average
experienced download speed Qfm is the average download speed in Mbps in the delivered
download speed data obtained from Ookla. QD comes from the OSIRIS infrastructure usage
data. For each market, we determine QD by calculating the amount of data requested of
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Orange per second between noon and 1 pm and dividing by the number of Orange base
stations in that market. Solving for the γ that makes equation 20 hold yields a spectral
efficiency parameter, γ̂m, for each market.52 Across municipalities, the mean value of γ̂m is
0.165, and its standard deviation is 0.048.

We recover γm focusing on Orange (for which we have data on infrastructure usage to construct
QD) and assume that this commune-level spectral efficiency parameter applies to every firm.
This is reasonable given that the firms have access to the same technologies. One potential
reason for differences across firms would be heterogeneous spectrum holdings. In the Hata
model of path loss, higher frequency spectrum is associated with greater loss (see equation
32). Thus, a firm with spectrum holdings primarily in high-frequency bands would experience
greater loss than a firm with considerable holdings of low-frequency spectrum. Reassuringly,
the spectrum holdings of Orange, SFR, and Bouygues were very similar in 2015.

Free owned little low-frequency spectrum in 2015. This is a potential cause for concern
when estimating Free’s costs using our structural model with the value of γm recovered using
Orange. Free could have a different spectral efficiency parameter. Furthermore, another
reason to worry about using equation 27 to recover Free’s infrastructure costs is that Free
benefited from active network sharing with Orange, meaning its delivered quality did not only
depend on its own infrastructure investments, but also on Orange’s (see section C.3). Despite
these concerns, our estimates of Free’s infrastructure costs are not drastically different from
those of the other firms (see Table 5). Thus, dropping Free’s cost estimates before running the
counterfactuals described below (which involve symmetric firms with costs parameters that
are averages across our estimates) makes little difference to the results.

B Demand Estimation Details (for online publication)

B.1 Contraction Mapping

Here we consider an alternative version of the Berry, Levinsohn and Pakes (1995) (BLP)
contraction mapping in which we observe market shares at the product-market level for Orange
products but only aggregate firm-level market shares for the other products. We first show
in section B.1.2 that if we observe market shares at the firm-market level, the problem can

52Different frequencies are used for 3G and 4G technology. We account for differences between generations
by calculating the channel capacity for each technology separately (i.e., Q̄(R, B3G) and Q̄(R, B4G)). We then
adjust the 3G channel capacity to its 4G-equivalent by using the ratio of 3G-to-4G maximum link spectral
efficiencies (respectively, 2.5 and 4.08 (Kim, 2015)). Therefore, in determining γ̂m in each market, we calculate
channel capacity as

Q̄fm

(
Rfm, B3G

fm, B4G
fm

)
= 2.5

4.08 Q̄fm

(
Rfm, B3G

fm

)
+ Q̄fm

(
Rfm, B4G

fm

)
.
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be rewritten in such a way that the BLP contraction mapping proof holds. In section B.1.3
we extend this result to the nested logit setting. Finally, in section B.1.4 we show that if we
observe some firm market shares only at the aggregate level (as is our case), the problem can
still be rewritten to fit into the BLP contraction mapping proof setup.

B.1.1 Standard BLP Contraction Mapping Setup

We will start with the standard BLP setting in order to introduce notation. In this setting,
there are products j ∈ J = {1, . . . , J}, and we observe market shares ςjm for each product.
We can express an individual’s utility for a product as uijm = δjm + µijm + εijm, which yields
the type-specific market shares

sijm = exp (δjm + µijm)∑
j′ exp

(
δj′m + µij′m

) .
Aggregate market shares are given by

sjm (δ) =
∫ exp (δjm + µijm)∑

j′ exp
(
δj′m + µij′m

)dF (µm) .

The existence of the contraction mapping implies that there is a unique vector δ such that
sm (δ) = ςm for any observed vector of shares ςm.

B.1.2 Grouped Products Extension

Our setting is one in which market shares are observed only for certain groupings of products.
That is, let J be partitioned into subsets Jf with f ∈ F = {1, 2, . . . F}. For each f , we
observe only the market share ςft for all the products within Jf . The subsets Jf may include
individual products (i.e., in our application each Orange product would have its own Jf set)
or several products (i.e., each non-Orange firm has one Jf group that includes all that firm’s
products).

Providing a parametric form, let δjm = θ1xjm + ξjm, where θ1 would capture what is often
referred to as “linear parameters,” i.e., parameters that can typically be estimated outside
of the contraction mapping because they only shift the mean utility component δjm that the
contraction mapping aims to recover. In this extension, the θ1 parameters must be included
in the contraction mapping.

We cannot recover δjm (or ξjm) separately for different j ∈ Jf . We assume ξjm = ξfm for all
j ∈ Jf for each f .

Let x̄fm be the mean value of xfm for those products within Jf . Then, we have δjm = θ1x̄fm+
θ1xd

jm+ξfm, where xd
jm := xjm−x̄fm. We define δ̃fm = θ1x̄fm+ξfm, and µ̃ijm = θ1xd

jm+µijm.
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This very nearly allows us to re-define the model in terms where we could apply the original
BLP proof strategy to establish the contraction mapping. The only problem is that µ̃ijm is
defined over j, where we would need it to be defined over f in order to apply the same proof
strategy. Let’s consider the aggregation over j to f :

sifm

(
δ̃
)

=
∑

j∈Jf

exp
(
δ̃fm + µ̃ijm

)
∑

j′∈J exp
(
δ̃f(j′)m + µ̃ij′m

) ,

where f (j′) refers to the f associated with product j′.

Defining µ̃ifm = log
(∑

j∈Jf
exp (µ̃ijm)

)
, it follows that

∑
j∈Jf

exp
(
δ̃fm + µ̃ijm

)
= exp

(
δ̃fm + µ̃ifm

)
,

and therefore

sifm

(
δ̃
)

=
∑

j∈Jf

exp
(
δ̃fm + µ̃ifm

)
∑

f ′ exp
(
δ̃f ′m + µ̃if ′m

) .

We can then aggregate up to market-level shares sfm by integrating over the µ̃ifm, and we
have rewritten our extended setting in a way that allows us to apply the BLP proof strategy.

B.1.3 Grouped Products Extension with Nested Logit

In the more general random coefficients nested logit (RCNL) model introduced by Grigolon
and Verboven (2014) (henceforth, GV), we can construct analogous formulas that will allow
us to recover group-specific mean demands δ̃.

In the RCNL model, type-specific market shares are as follows:

sijm =
exp

(
δjm+µijm

1−σ

)
exp

(
Iig(j)
1−σ

) exp
(
Iig(j)

)
exp (Ii)

,

where σ ∈ [0, 1) is the nesting parameter, g (j) return the nest to which j belongs,53 and

Iig = (1 − σ) log
(∑

j∈Jg
exp

(
δjm+µijm

1−σ

))
,

Ii = log
(
1 +

∑
g∈G exp (Iig)

)
.

53We will assume that products produced by the same firm belong to the same group. Formally, for each
f , g (j) = gf for all j ∈ Jf .
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In this extension, we redefine δ̃fm and µ̃ifm to incorporate σ. Let δ̃fm = θ1x̄fm+ξfm

1−σ , µ̃ijm =
θ1xd

jm+µijm

1−σ , and µ̃ifm = log
(∑

j∈Jf
exp (µ̃ijm)

)
. Then

sifm =
exp

(
δ̃fm + µ̃ifm

)
exp

(
Iig(f)
1−σ

) exp
(
Iig(f)

)
exp (Ii)

where Iig = (1 − σ) log
(∑

f∈Fg
exp

(
δ̃fm + µ̃ifm

))
and Fg = {f ∈ F : g (f) = g}.

GV note that, substituting in our notation,

f
(
δ̃
)

= δ̃ + log (ς) − log
(
s
(
δ̃
))

is a contraction mapping if
1 − 1

sf

∂sf

∂δ̃f

≥ 0.

Unlike in GV, this holds in our case. Explicitly,

∂sf

∂δ̃f

=
(

1 − σ

1 − σ
sf |g − sf

)
sf ,

and so
1 − 1

sf

∂sf

∂δ̃f

= σ

1 − σ
sf |g + sf ≥ 0 ⇔ σsf |g + (1 − σ) sf ≥ 0.

This condition holds for all σ ∈ [0, 1).

B.1.4 Market Aggregation Extension

In our setting we observe market shares only at the aggregate level for some firms. We assume
in this extension ξjm = ξf(j) for all j, m and recover ξf for each f . We will proceed in this
section using the non-nested setting introduced in section B.1.2, but the results hold using
the analogues to the RCNL expressions introduced in section B.1.3.

Analogous to the previous setup, let x̄f be the mean value of xjm across products j ∈ Jf and
markets m, x̄f = 1

MJf

∑
m

∑
j∈Jf

xjm. Then, δjm = θ1x̄f(j) + θ1xd
jm + ξf(j). where we now

define xd
jm := xjm − x̄f(j). Analogously defining δ̃f = θ1x̄f + ξf , µ̃ijm = θ1xd

jm + µijm, and
µ̃ifm := log

(∑
j∈Jf

exp (µ̃ijm)
)
, then

s̄if (δ̃) =
∑
m

w(m)
exp

(
δ̃f + µ̃ifm

)
∑

f ′ exp
(
δ̃′

f + µ̃if ′m

) .
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We can aggregate up to aggregate firm shares s̄f by integrating over µ̃ifm:

s̄f =
∫ ∑

m

w(m)
exp

(
δ̃f + µ̃ifm

)
∑

f ′ exp
(
δ̃f ′ + µ̃if ′m

)dF (µ̃ifm) =
∫ exp

(
δ̃f + µ̃ifm

)
∑

f ′ exp
(
δ̃f ′ + µ̃if ′m

)dG(µ̃ifm).

The final expression makes clear that the BLP contraction mapping proof strategy still holds
in this aggregate setting.

Since we observe product-level market shares for every market for Orange products, we allow
ξjm to differ by product and market for all j ∈ JORG.

When coding the contraction mapping, we follow Conlon and Gortmaker (2020) in imple-
menting the SQUAREM algorithm (Varadhan and Roland, 2008).

B.2 Calibration

In this section, we explain how we derived the values used from calibration.

First, we have the own price elasticity for Orange, defined in equation 10, which is an elasticity
with respect to a proportional change in the prices of all of Orange’s products at once. An
equivalent way of writing this elasticity is

d ln sORG
d ln PORG

=
∑

j∈JORG

∂sORG
∂Pj

Pj

sORG

=
∑

j∈JORG

Pj

sORG

∑
j′∈JORG

∂sj′
∂Pj

=
∑

j∈JORG

∂sj

∂Pj

Pj

sj

sj

sORG

∑
j′∈JORG

∂sj′
∂Pj

/
∂sj

∂Pj

=
∑

j∈JORG
ej

sj

sORG

∑
j′∈JORG

−DIV j,j′
,

(36)

where d ln PORG represents a proportional change in the prices of Orange’s plans, ej denotes
product j’s own price elasticity and DIV j,j′ is the diversion ratio from product j to j′,

DIV j,j′ = −
∂sj′
∂Pj

∂sj

∂Pj

.

The third line follows by dividing and multiplying by ∂sj

∂Pj
/sj .

In Bourreau, Sun and Verboven (2021), we take elasticities (ej) from Table A.4, diversion
ratios (DIV j,j′) from Table A.3, and quantities (shares) from Table 3. Plugging in all these
numbers, we find an elasticity of −2.36.
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Next, we have Orange’s diversion ratio to the outside option, defined as

DIV ORG,0 = −
ds0

d ln PORG

dsORG
d ln PORG

, (37)

where d ln PORG represents a proportional change in all of Orange’s prices. By the chain rule,

ds0
d ln PORG

=
∑

j∈JORG

∂s0
∂Pj

Pj .

We then have

ds0
d ln PORG

=
∑

j∈JORG

DIV j,0 ∂sj

∂Pj
Pj =

∑
j∈JORG

DIV j,0ejsj , (38)

where DIV j,0 is the diversion ratio from j to the outside option.

Turning to the denominator of equation 37, we can write

dsORG

d ln PORG
= eORGsORG. (39)

Finally, we substitute equations 38 and 39 into equation 37:

DIV ORG,0 =
∑

j∈JORG
DIV j,0ejsj

eORGsORG
. (40)

Taking elasticities, diversion ratios, and shares from the same sources in BSV as above, this
yields a diversion ratio of 0.036.

Being precise, the moment we use for estimation averages over market-level diversion ratios,
while the diversion ratio calculated here is based on objects that are already sample averages.
That is, there is a difference in whether we average before or after taking the ratio expressed
in equation 40. However, this difference appears to have a trivial impact on the value of the
diversion ratio. In our sample at our parameter estimates, the difference in the diversion ratio
if averaging is done before taking the ratio versus if done after is 0.00087.

C Data Appendix (for online publication)

This appendix provides additional description of our main datasets and variables. Section C.1
presents the characteristics of mobile tariffs and the tariff dataset. Section C.2 describes the
measurement of the quality of mobile data. Section C.3 discusses network sharing in France
in 2015.
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C.1 Product Data

C.1.1 Product Characteristics

We collect data on mobile phone plans released between November 2013 and October 2015,
along with their characteristics, from operators’ quarterly catalogs. It includes postpaid plans
from the four MNOs and the largest MVNO (EI Telecom) as well as their prepaid plans.54

Promotional plans, typically released during summer and Christmas, are not included in the
dataset.

Plan characteristics include tariff, voice and data limits, handset subsidy, length of commit-
ment, and whether or not plans were bundled with fixed services. As described in section 2.2,
we choose representative mobile-only plans for each firm and adjust monthly prices based on
contract duration and handset subsidies.

We take over 100 contracts from catalogs, and from them we construct 21 representative
products in our model’s choice set. We define categories of plans according to their level
of data limits: less than 500 MB, 500–3 000 MB, 3 000–7 000 MB and more than 7 000 MB.
These thresholds are chosen following discussions with industry experts and the statistical
distribution of chosen plans. The second data limit category—that is, contracts with 500–
3 000 MB—we have further split according to their voice allowances: unlimited or not, making
a total of five categories of phone plans. Low data limit plans typically do not have unlimited
voice, and high data limit contracts typically come with unlimited voice allowance, so we do
not split these categories by the voice limit. We exclude plans bundled with fixed broadband
or television.

We choose the least expensive plan in each category as the category’s representative plan.
Some customers keep old plans that are no longer available, so we fill these missing data by
using the most similar representative plan. While some plans with handset subsidies have
corresponding standalone versions, some do not. We adjust the prices of these latter plans
using data on the price of handsets and the upfront payment required by Orange. We collect
these data for both iPhone and Samsung, the two most popular handsets. We then distribute
the handset cost over 24 months and update the monthly plan price by subtracting off the
monthly cost of the handset. In addition, we assume that Orange’s handset subsidies apply
to other operators’ subsidized contracts because we do not observed their upfront costs.

54ORG’s contracts include not only those that are sold through its main brand, but also others sold under
alternative brands such as SOSH, BNP Paribas Mobile, FNAC Mobile, Click Mobile, Carrefour Mobile, etc.
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C.1.2 Soft Data Limits

For plans with data limits, the download speed is reduced for usage above allowance if no add-
on is purchased. The maximal download speed under throttling is typically 128 Kbps. With
this download speed, it would take over half-an-hour to download a 30 MB file, compared
to 2 minutes under a theoretical non-throttled speed of 2 Mbps in a 3G network, and 24
seconds given a moderate 4G download speed of 10 Mbps. Basically, only emails and light
web pages can be opened under throttling. As presented in Table 7 below, this download
speed is not always specified by operators in their contracts. When it is, it may depend
on the location of the usage (local or abroad). The actual download speed experienced by
customers is a function of the number of simultaneous users, its location and handset. In our
demand model, however, we assume that any data consumption over the data limit yields a
speed of exactly 128 Kbps.

Table 7: Maximal Download Speed under Throttling (Kbps)

Operator National Roaming

ORG 128* ns
SFR ns ns
BYG 128 32
FREE ns ns

*:except video streaming.

ns ≡ not specified.

Source: operators’ contracts

C.2 Quality Data

Quality measures are constructed using download speed test results provided by Ookla. Test
results come from users who use Ookla’s free Internet speed test, called “Speedtest,” using a
web browser or within an app. Using speed tests in France in the second quarter of 2016 yields
1 056 285 individual speed tests. Each speed test records the download speed, mobile network
operator, and the user’s location. We aggregate speed tests by averaging measured download
speeds over tests for a given operator and geographic market, yielding an operator-market
quality measure. An operator-market quality measure is, on average, an average of 284 test
results. Note that our estimates rely on an instrument for these quality measures (see section
3.2.2), alleviating concerns about attenuation bias.
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C.3 Network Sharing

Network sharing occurs when a network operator shares a part or the whole of its network
resources with a retail competitor. These resources can be passive network elements, such as
antenna supports, masts, or active network elements, such as frequency bandwidths. Passive
network sharing affects coverage differentiation but not necessarily quality differentiation. It
typically consists of operators sharing the same tower and potentially the cost of electricity.
In general, it is any agreement between MNOs that do not involve the sharing of available
frequency bandwidths.

In contrast, under active network sharing (Radio Access Network-Sharing), operators cannot
differentiate in terms of quality, defined as the frequency bandwidth available per customer.
Typically, it consists of the sharing of frequency bands and the network elements involved
in data transmission. Roaming agreements, whereby an operator’s customers rely on the
network of a host operator to communicate, is the highest level of active network sharing. It
does not offer any possibility for quality or coverage differentiation.

Table 8 below presents the network sharing agreements reached between 2012 and 2015. These
agreements apply to two types of areas according to their population density. “White Areas”
or “Zones Blanches” correspond to areas where population density is so low that network
deployment by several operators is not profitable. These areas, which are typically rural,
are designated by the regulator and represent roughly 1% of the population and 10% of the
national surface. Only ORG, SFR and BYG have invested in these areas.

The most widespread network technologies in the White Areas are 2G, EDGE and GPRS. 55

However, 3G technology has been recently deployed. As of the end of December 2015, half
of ORG and BYG’s networks in these areas were covered by 3G, compared to 35% for SFR.
In general, only one operator invests in a given White Area, and 64% of antennas in these
areas are involved in a roaming agreement. Rival operators roam over the network of the
only operator that invests in the area. As a result, there is no quality differentiation. For the
remaining 36% of antennas, operators share passive network elements.

At the national level, FREE’s customers can roam over ORG’s 2G and 3G networks as long
as there is no FREE antenna nearby. As a result, FREE cannot differentiate from ORG on
2G and 3G technologies, except when a FREE antenna is nearby its customer. In addition,
FREE does not have access to networks in Zones Blanches where BYG or SFR is the leader.
MVNOs have roaming agreements with their hosts and therefore cannot differentiate in terms
of quality or coverage.

Our model focuses on high-density areas to avoid the need to explicitly model network shar-
55EDGE and GPRS are suitable for low-speed mobile data services.
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ing. During our period of study, the only active network sharing in such areas would have
involved FREE’s customers receiving data from 2G and 3G infrastructure owned and oper-
ated by ORG. Meanwhile, ORG and FREE each owned and operated their own distinct 4G
network infrastructure, At the margin, 4G investments were how firms were differentiating
and competing in download speeds in 2015.

Table 8: Network Sharing Agreements 2012-2015

FREE ORG SFR BYG

Zone Blanche Roaming: 64% of 2G & 3G antenna ↔
Passive sharing: 36% of antenna ↔

Low Density 2G and 3G RAN-Sharing ✗ ✗ ↔
4G Roaming ✗ ✗ →

High Density ✗ ✗ ✗ ✗

National Passive sharing ↔
2G and 3G Roaming → ✗ ✗

Source: Summary from discussions with ORG’s experts.

Note: ↔: two-way (reciprocal) sharing, A → B one-way sharing hosted by operator B.

D Supplementary Results (for online publication)

D.1 Alternative Cost Specification

In this section we consider the robustness of our counterfactual results to the specification
of infrastructure costs. In the main text, we use a specification in which base station costs
are proportional to bandwidth. In this section, we consider the impact on our results of an
alternative specification in which we assume that all of the infrastructure costs are fixed per
base station. That is, we replace the infrastructure cost function specification (equation 22)
with

Cfm (Rfm, Bfm) = cs
fm

Am

A (Rfm) .

We use this specification of infrastructure costs to recover ĉs
fm for each firm f and market m,

and these parameters now have the interpretation of costs per base station (rather than costs
per base station per unit of bandwidth).56

At four firms, base station costs are the same for both cost specifications – this is just the
average cost per base station recovered from the data. At fewer firms, base station costs are
cheaper in this specification where costs do not scale with bandwidth; at more firms, base
stations are more expensive in this specification.

56Each ĉs
fm is simply Bfmc̃s

fm, where c̃s
fm is the infrastructure cost parameter recovered using the specifi-

cation used in the main text.
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Figure 14 plots different measures of welfare as we change the number of symmetric firms,
analogous to figure 9 in section 6.1.

Figure 14: Counterfactual Welfare
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Note: Welfare is measured in euros per capita relative to monopoly.

Relative to the case in which costs are proportional to bandwidth, this cost specification
implies fewer firms maximize both consumer and total surplus. However, this specification
probably overstates the extent of scale efficiencies.

With this cost specification, there is the introduction of another source of economies of scale
from the duplication of fixed costs. Thus, in this case, if we hold the number of base stations
per firm fixed, more firms means more base stations, which means higher costs. In contrast,
when base station costs are proportional to bandwidth, if we hold the number of base stations
per firm fixed, then total base station costs do not change as we change the number of firms,
given that the total bandwidth in the industry is fixed. While base stations certainly involve
some fixed costs, firms can and do avoid duplicative fixed costs by engaging in passive network
sharing, in which firms share some base station infrastructure (such as the land or the tower).
Thus, we view as unrealistic these counterfactuals in which base stations involve fixed costs
that are unavoidably replicated as we increase the number of firms. In contrast, our main
cost specification is consistent with an equilibrium in which firms co-locate their base stations
and share fixed costs.

The results for this alternative specification point to the importance of scale efficiencies that
can be attained without integration. One might wonder in particular whether the gains from
economies of pooling, which play an important role in our main results, can be attained
without consolidation. We note that such gains would require firms from sharing their active
network infrastructure (also known as Radio Access Network (RAN) sharing). Such network
sharing is rare, while the sharing of passive infrastructure is common. This may be because
firms do not find it profitable to share their active network infrastructure as in Fund et al.
(2017). Active network sharing undermines firm’s incentives to differentiate on quality. An
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open question is whether there is a possible regulatory framework that would allow firms
to attain efficiencies from pooling network infrastructure without undermining incentives to
invest.

Figure 15: Bandwidth Derivatives
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Note: Derivatives are evaluated at the symmetric equilibrium values. The derivative of own profits with respect
to another firm’s bandwidth (dΠf /dBf ′ ) is undefined in the monopoly case. In the first subplot, therefore, what
is reported in the case of only one firm is simply the derivative of own profits with respect to own bandwidth
(dΠf /dBf ). Dashed lines represent 95% confidence intervals.

We also assessed the marginal value of spectrum with this alternative cost specification.
Results were similar: marginal surplus exceed firms’ willingness to pay by a factor of four
instead of the factor of five we saw with the main specification in section 6.2.

D.2 Equilibrium without Path Loss

Here we show that in symmetric equilibria the optimal number of base stations per consumer
is constant with respect to population density when there is no path loss or interference.

Let Nfm represent the number of base stations operated by operator f in municipality m.
The number of consumers within each cell is given by DmAm

Nmf
, where Dm is the population

density and Am is the municipality’s area. We now rewrite equation 19 as

Qfm = Qfm − DmAm

Nmf
qD
(
P fm, Qfm, P −fm, Q−fm

)
, (41)

where qD
(
P fm, Qfm, P −fm, Q−fm

)
represents equilibrium data consumption per capita.

Note that channel capacity per base station Qfm is exogenous without path loss and interfer-
ence. Bandwidth is endowed, so there are no choice variables to influence channel capacity.
The firm’s only infrastructure choice here is effectively how many consumers they want to
serve with each base station.

Consider firm f ’s variable profit function, equation 21, now written in per-consumer terms
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and as a function of quality:

ΠV
fm

(
P f , Qfm

)
≡
(
P f − cu

f

)
· sf

(
P fm, Qfm, P −fm, Q−fm

)
.

Let λfm = Dm
Nfm

, and note that λfm can represent the firm’s infrastructure choice variable.
Rewrite variable profits as

ΠV
fm (P f , λfm) ≡

(
P f − cu

f

)
· sf (P fm, λfm, P −fm, λ−fm) ,

noting that the share function can be expressed as a function of λfm since delivered down-
load speeds are determined by the congestion equation 41, and here λfm = Dm

Nfm
defines the

congestion equation above.

Given the cost function expressed in equation 22, infrastructure costs are cs
fmBfmNfm, and

costs per capita can be expressed as

cs
fmBfm

Nfm

DmAm
= cs

fmBfmλ−1
fmA−1

m .

Both variable profits and infrastructure costs depend on population density Dm and the
number of base stations Nfm only through their ratio λfm = Dm

Nfm
. Therefore, the firm’s

optimum and the equilibrium level of investment entail a value for λ, or a number of base
stations per consumer. Therefore, when we do comparative statics with respect to population
density, the equilibrium number of base stations will be proportional to population density.

D.3 Impact of Population Density

Our main counterfactual simulations consider a market with moderate population density.
This density of 2 792 persons / km2 roughly corresponds to a high-density suburb. A natural
question is whether the population density affects the trade-off between market power and
scale efficiencies, perhaps changing the optimal number of firms. We first note that, without
path loss, the equilibrium comparative statics with respect to population density would be
very straightforward.

As shown above, without path loss, channel capacity is fixed by the bandwidth owned and
operated by the firm. The cell radius will not affect channel capacity. The decision of cell
radius amounts to a decision of how many customers to serve with each base station, with
the firm effectively choosing the optimal level of congestion. The population density will
not affect this choice when we think about it in terms of the optimal number of consumers
per base station (or the optimal level of congestion). As population density increases, the
optimal number of consumers per station remains constant, implying base station area will be
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inversely proportional to population density. Equilibrium outcomes like prices and delivered
download speeds remain the same. See section D.2 for a more formal account.

Figure 16: Counterfactual Prices and Qualities by Density
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Note: Each line in a subplot corresponds to a different population density, with the darker the line, the higher
the density. Channel capacity is per base station. Download speeds are the average speed of transmission
received by a user, including wait times.

In addition to France’s population-weighted mean population density (2 792 people/km2), we
consider three alternative population densities: the raw population densities of the continental
USA (43.1) and France (123.9)—note that these are both quite low densities as both countries
involve large unpopulated areas—and the population density of Paris (20 588).

Figure 16 illustrates how equilibrium outcomes for these different population densities. Cer-
tain outcomes are indeed affected by population density. Naturally, path loss is more severe
when serving a less dense market, demonstrated by lower channel capacities per unit of band-
width in Figure 16 (despite higher levels of investment per person).57

Otherwise, the comparative statics with respect to population density are very similar to what
we would expect without path loss. In other words, we do not see substantial economies of
density. Figure 18 depicts channel capacity as a function of the cell’s radius. For radii in

57For each of these densities, we use the Hata model of path loss presented in Appendix A.1.1. This Hata
model is for small cities. We have also simulated these counterfactual densities with rural and suburban Hata
models of path loss for the associated densities, which exhibit less path loss as a function of distance. Results
look similar but correspond more closely to the case of no path loss (in which the density does not matter).
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Figure 17: Counterfactual Welfare by Density
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Note: Depicted are measures of welfare as a function of number of firms. Each line in a subplot corresponds
to a different population density, with the darker the line, the higher the density. Welfare is measured in euros
per capita relative to monopoly, so for each plot the value at 1 firm is 0. Dashed vertical lines denote the
number of firms that maximizes that measure of welfare.

the range of the equilibrium radii in our counterfactuals, this function is quite flat, which
is consistent with economies of density not being substantial at these population densities,
although they may be at extremely low densities.

The optimal number of firms (for consumer or total surplus), depicted in Figure 17, is quite
robust to the population density. Equilibrium outcomes like prices and delivered download
speeds are extremely similar for different population densities. A takeaway is that, given the
equilibrium cell sizes we observe, economies of density only appear to be a significant concern
in very sparely populated areas.
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Figure 18: Channel Capacity as Function of Radius
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Note: Rdata corresponds to the average radius of a cell in our data. R∗
low density and R∗

high density correspond
to the equilibrium radius chosen in the four-firm equilibrium when the market has, respectively, a density of
France and a density equal to the population-weighted mean population density of France. Bandwidth is set
equal to the same total bandwidth as in the rest of our counterfactuals divided by four (for four firms), and
spectral efficiency is also set to the same value as in the rest of our counterfactuals.
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Table 9: Notation

Symbol Description
f indexes firms
i indexes consumers
j indexes mobile phone plans
J set of mobile phone plans
ℓ indexes a location

L (R) set of locations within hexagon of radius R
m indexes markets (municipalities)
γm data transmission efficiency in market m
εij idiosyncratic, consumer-plan-level demand shock
θ demand parameters

θpi price coefficient
θp0 parameter controlling the mean of the price coefficient
θpz parameter controlling the heterogeneity in the price coefficient
θv coefficient on dummy for unlimited voice
θO average Orange demand shock
θc opportunity cost of time spent downloading data coefficient
θdi parameter of exponential distribution that defines distribution

from which a consumer’s utility of data consumption is drawn
θd0 parameter controlling the mean of θdi

θdz parameter controlling the heterogeneity in θdi

ϑi random shock to consumer’s utility of data consumption,
distributed exponentially with parameter θdi

θi vector containing θpi and θdi

ξjm market-level demand shock
σ nesting parameter

Bfm bandwidth (in Megahertz)
cu

j cost per user
cs

fm cost per base station and unit of bandwidth
dj data consumption limit of phone plan j

Dm population density
F used for CDFs
H number of hours in a month

Iℓ (Rfm) interference power at location ℓ when cell radius is Rfm

Nfm number of base stations for firm f in market m
qmℓ data transmission speed at location ℓ in municipality m (in Mbits/second)
Qfm channel capacity (in Mbits/second)
Qfm download speed (in Mbits/second) of firm f in market m
QL throttled download speed (in Mbits/second)

QD
fm demand requests (in Mbits/second)

Pj price of phone plan j
Rfm radius of area served by one base station (in km)
Sℓ signal power at location ℓ

sjm market share
s vector of market shares
u utility of a phone plan
vj dummy variable for whether plan j has an unlimited voice allowance
w utility from data consumption over course of month
x monthly data consumption
zi consumer i’s income

73


	Introduction
	Data and Background
	Firms
	Products and Characteristics
	Demand Data
	Infrastructure Data 
	Descriptive Statistics

	Demand Model
	Demand Model
	Mobile Data Consumption
	Mobile Phone Plan Decision

	Demand Estimation
	Unobserved Demand Component
	Identification


	Industry Model
	Engineering Model
	Base Stations and Path Loss 
	Queuing and Congestion
	Economies of Scale

	Simultaneity of Demand and Download Speeds
	Firm Competition
	Price Competition
	Costs and Infrastructure Competition

	Cost Estimation
	Costs per User
	Infrastructure Costs


	Results
	Demand Estimates
	Cost Estimates

	Counterfactual Simulations
	Market Power, Scale Efficiencies, and Bandwidth Allocations
	Optimal Number of Firms
	Asymmetric Spectrum Allocations

	Value of Spectrum to the Industry
	Short-Run Merger Analysis

	Conclusion
	Technical Appendix (for online publication)
	Data Transmission Details
	Signal Power
	Noise and Interference

	Spectral Efficiency Calibration

	Demand Estimation Details (for online publication)
	Contraction Mapping 
	Standard BLP Contraction Mapping Setup
	Grouped Products Extension
	Grouped Products Extension with Nested Logit
	Market Aggregation Extension

	Calibration

	Data Appendix (for online publication)
	Product Data
	Product Characteristics
	Soft Data Limits

	Quality Data
	Network Sharing

	Supplementary Results (for online publication)
	Alternative Cost Specification
	Equilibrium without Path Loss 
	Impact of Population Density


